Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 17(9): e1003222, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956407

RESUMO

BACKGROUND: Treatment with corticosteroids is recommended for Duchenne muscular dystrophy (DMD) patients to slow the progression of weakness. However, chronic corticosteroid treatment causes significant morbidities. Vamorolone is a first-in-class anti-inflammatory investigational drug that has shown evidence of efficacy in DMD after 24 weeks of treatment at 2.0 or 6.0 mg/kg/day. Here, open-label efficacy and safety experience of vamorolone was evaluated over a period of 18 months in trial participants with DMD. METHODS AND FINDINGS: A multicenter, open-label, 24-week trial (VBP15-003) with a 24-month long-term extension (VBP15-LTE) was conducted by the Cooperative International Neuromuscular Research Group (CINRG) and evaluated drug-related effects of vamorolone on motor outcomes and corticosteroid-associated safety concerns. The study was carried out in Canada, US, UK, Australia, Sweden, and Israel, from 2016 to 2019. This report covers the initial 24-week trial and the first 12 months of the VBP15-LTE trial (total treatment period 18 months). DMD trial participants (males, 4 to <7 years at entry) treated with 2.0 or 6.0 mg/kg/day vamorolone for the full 18-month period (n = 23) showed clinical improvement of all motor outcomes from baseline to month 18 (time to stand velocity, p = 0.012 [95% CI 0.010, 0.068 event/second]; run/walk 10 meters velocity, p < 0.001 [95% CI 0.220, 0.491 meters/second]; climb 4 stairs velocity, p = 0.001 [95% CI 0.034, 0.105 event/second]; 6-minute walk test, p = 0.001 [95% CI 31.14, 93.38 meters]; North Star Ambulatory Assessment, p < 0.001 [95% CI 2.702, 6.662 points]). Outcomes in vamorolone-treated DMD patients (n = 46) were compared to group-matched participants in the CINRG Duchenne Natural History Study (corticosteroid-naïve, n = 19; corticosteroid-treated, n = 68) over a similar 18-month period. Time to stand was not significantly different between vamorolone-treated and corticosteroid-naïve participants (p = 0.088; least squares [LS] mean 0.042 [95% CI -0.007, 0.091]), but vamorolone-treated participants showed significant improvement compared to group-matched corticosteroid-naïve participants for run/walk 10 meters velocity (p = 0.003; LS mean 0.286 [95% CI 0.104, 0.469]) and climb 4 stairs velocity (p = 0.027; LS mean 0.059 [95% CI 0.007, 0.111]). The vamorolone-related improvements were similar in magnitude to corticosteroid-related improvements. Corticosteroid-treated participants showed stunting of growth, whereas vamorolone-treated trial participants did not (p < 0.001; LS mean 15.86 [95% CI 8.51, 23.22]). Physician-reported incidences of adverse events (AEs) for Cushingoid appearance, hirsutism, weight gain, and behavior change were less for vamorolone than published incidences for prednisone and deflazacort. Key limitations to the study were the open-label design, and use of external comparators. CONCLUSIONS: We observed that vamorolone treatment was associated with improvements in some motor outcomes as compared with corticosteroid-naïve individuals over an 18-month treatment period. We found that fewer physician-reported AEs occurred with vamorolone than have been reported for treatment with prednisone and deflazacort, and that vamorolone treatment did not cause the stunting of growth seen with these corticosteroids. This Phase IIa study provides Class III evidence to support benefit of motor function in young boys with DMD treated with vamorolone 2.0 to 6.0 mg/kg/day, with a favorable safety profile. A Phase III RCT is underway to further investigate safety and efficacy. TRIAL REGISTRATION: Clinical trials were registered at www.clinicaltrials.gov, and the links to each trial are as follows (as provided in manuscript text): VBP15-002 [NCT02760264] VBP15-003 [NCT02760277] VBP15-LTE [NCT03038399].


Assuntos
Atividade Motora/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Corticosteroides/efeitos adversos , Criança , Pré-Escolar , Progressão da Doença , Glucocorticoides/efeitos adversos , Humanos , Masculino , Prednisona/uso terapêutico , Pregnadienodiois/metabolismo , Resultado do Tratamento , Caminhada/fisiologia
2.
JAMA Neurol ; 76(8): 978-983, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31107518

RESUMO

IMPORTANCE: Newborn screening (NBS) identifies infants with specific congenital disorders for which earlier intervention cannot only prevent a lifetime of chronic disability but also, most importantly, save lives. In this article, we discuss complexities associated with NBS processes in the United States, with a focus on challenges in neuromuscular disorders. OBSERVATIONS: As new interventions for neuromuscular disorders become available, the clinical community must prepare to overcome the challenges of adding new diseases to screening panels and understand the rigorous evidence review at the federal level and the complex process of state-level implementation. In this regard, NBS programs for Pompe disease and spinal muscular atrophy can guide the path of Duchenne muscular dystrophy and other neuromuscular disorders as future candidates for NBS. CONCLUSIONS AND RELEVANCE: The availability of advanced screening methods, the emergence of effective treatment, and the support of professional organizations may facilitate the expansion of NBS, such that an increasing number of infants can be identified in the newborn period who will benefit from life-saving interventions.

3.
J Appl Toxicol ; 34(11): 1122-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132005

RESUMO

Cardiolipin (CL) is crucial for mitochondrial energy metabolism and structural integrity. Alterations in CL quantity or CL species have been associated with mitochondrial dysfunction in several pathological conditions and diseases, including mitochondrial dysfunction-related compound attrition and post-market withdrawal of promising drugs. Here we report alterations in the CL profiles in conjunction with morphology of soleus muscle (SM) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice, subjected to ephedrine treatment (EPH: 200 mg kg(-1) day(-1) orally), treadmill exercise (EX: 10 meters per min, 1 h per day), or dietary restriction (DR: 25% less of mean food consumed by the EX group) for 7 days. Mice from the DR and EPH groups had a significant decrease in percent body weight and reduced fat mass compared with DIO controls. Morphologic alterations in the BAT included brown adipocytes with reduced cytoplasmic lipid droplets and increased cytoplasmic eosinophilia in the EX, DR and EPH groups. Increased cytoplasmic eosinophilia in the BAT was ultrastructurally manifested by increased mitochondrial cristae, fenestration of mitochondrial cristae, increased electron density of mitochondrial matrix, and increased complexity of shape and elongation of mitochondria. Mitochondrial ultrastructural alterations in the SM of the EX and DR groups included increased mitochondrial cristae, cup-shaped mitochondria and mitochondrial degeneration. All four CL species (tri-linoleoyl-mono-docosahexaenoyl, tetralinoleoyl, tri-linoleoyl-mono-oleoyl, and di-linoleoyl-di-oleoyl) were increased in the BAT of the DR and EPH groups and in the SM of the EPH and EX groups. In conclusion, cardiolipin profiling supported standard methods for assessing mitochondrial biogenesis and health, and may serve as a potential marker of mitochondrial dysfunction in preclinical toxicity studies.


Assuntos
Biomarcadores/metabolismo , Cardiolipinas/metabolismo , Efedrina/farmacologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Restrição Calórica , Cromatografia Líquida , Dieta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Condicionamento Físico Animal , Espectrometria de Massas em Tandem
4.
ACS Chem Biol ; 8(12): 2715-23, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24070067

RESUMO

DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.


Assuntos
Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas de Fluorescência Verde/metabolismo , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/enzimologia , Ligação Competitiva , Cálcio/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/enzimologia , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/enzimologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve , Fosforilação , Cultura Primária de Células , Inibidores de Proteínas Quinases/química , Proteômica , Pirazóis/química , Pirimidinonas/química , Coelhos , Proteínas Recombinantes de Fusão/genética
5.
J Appl Physiol (1985) ; 112(11): 1940-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422801

RESUMO

There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.


Assuntos
Creatina/farmacocinética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Creatina/sangue , Creatina/urina , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Metilação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
6.
J Biol Chem ; 282(7): 4884-4893, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17158456

RESUMO

Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Morte Celular/fisiologia , Proteínas Quinases Associadas com Morte Celular , Ativação Enzimática/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Miosinas/metabolismo , Peptídeos/farmacologia , Fosforilação , Proteômica , Fibras de Estresse/metabolismo , Suínos , Quinases Associadas a rho
7.
Expert Rev Proteomics ; 3(1): 75-85, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16445352

RESUMO

This review will outline examples of the authors' focused proteomics approaches to studying signal transduction pathways in smooth muscle. By focusing the use of traditional proteomics techniques with hypothesis-driven selection methods, this approach efficiently addresses the identification of novel elements in a signal transduction pathway of interest. However, focused proteomics serves only as a starting point in the investigation of novel signaling proteins. While focused proteomics studies can suggest the involvement and general biochemical function of a protein in a signaling pathway, these findings must be further investigated and validated. Through the integrated use of focused proteomics with complementary approaches such as genetics, biochemistry and cell physiology, a complete and detailed mechanism of signal transduction can be determined.


Assuntos
Músculo Liso/metabolismo , Proteômica , Transdução de Sinais , Animais , Espectrometria de Massas , Fosforilação , Proteoma/química , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA