Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(7): 1905-1925, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305576

RESUMO

Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug - ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites' photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials' biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.


Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas
2.
Biomater Sci ; 12(4): 949-963, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38221844

RESUMO

The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks.


Assuntos
Nanofibras , Nanopartículas , Nanotubos , Máscaras , Filtração
3.
ACS Appl Mater Interfaces ; 15(50): 58103-58118, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38019273

RESUMO

Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(l-lactide-co-glycolide) and poly(l-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.


Assuntos
Quitosana , Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Animais , Degeneração do Disco Intervertebral/terapia , Engenharia Tecidual , Sulfatos de Condroitina/metabolismo , Quitosana/metabolismo
4.
ACS Appl Mater Interfaces ; 15(5): 6283-6296, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36576451

RESUMO

In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain-computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today's major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.


Assuntos
Encéfalo , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Condutividade Elétrica , Córtex Cerebral
5.
ACS Appl Mater Interfaces ; 14(41): 46123-46144, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36161869

RESUMO

In recent times, the use of personal protective equipment, such as face masks or respirators, is becoming more and more critically important because of common pollution; furthermore, face masks have become a necessary element in the global fight against the COVID-19 pandemic. For this reason, the main mission of scientists has become the development of face masks with exceptional properties that will enhance their performance. The versatility of electrospun polymer nanofibers has determined their suitability as a material for constructing "smart" filter media. This paper provides an overview of the research carried out on nanofibrous filters obtained by electrospinning. The progressive development of the next generation of face masks whose unique properties can be activated in response to a specific external stimulus is highlighted. Thanks to additional components incorporated into the fiber structure, filters can, for example, acquire antibacterial or antiviral properties, self-sterilize the structure, and store the energy generated by users. Despite the discovery of several fascinating possibilities, some of them remain unexplored. Stimuli-responsive filters have the potential to become products of large-scale availability and great importance to society as a whole.


Assuntos
COVID-19 , Máscaras , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Filtração , Nanotecnologia , Antivirais , Antibacterianos , Polímeros
6.
Sci Rep ; 11(1): 21144, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707121

RESUMO

Over the last decade, nanotechnology and nanomaterials have attracted enormous interest due to the rising number of their applications in solar cells. A fascinating strategy to increase the efficiency of organic solar cells is the use of tailor-designed buffer layers to improve the charge transport process. High-efficiency bulk heterojunction (BHJ) solar cells have been obtained by introducing hollow core polyaniline (PANI) nanofibers as a buffer layer. An improved power conversion efficiency in polymer solar cells (PSCs) was demonstrated through the incorporation of electrospun hollow core PANI nanofibers positioned between the active layer and the electrode. PANI hollow nanofibers improved buffer layer structural properties, enhanced optical absorption, and induced a more balanced charge transfer process. Solar cell photovoltaic parameters also showed higher open-circuit voltage (+ 40.3%) and higher power conversion efficiency (+ 48.5%) than conventional architecture BHJ solar cells. Furthermore, the photovoltaic cell developed achieved the highest reported efficiency value ever reached for an electrospun fiber-based solar cell (PCE = 6.85%). Our results indicated that PANI hollow core nanostructures may be considered an effective material for high-performance PSCs and potentially applicable to other fields, such as fuel cells and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA