Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(3): eabq1637, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652513

RESUMO

Memory encoding and retrieval rely on specific interactions across multiple brain areas. Although connections between individual brain areas have been extensively studied, the anatomical and functional specificity of neuronal circuit organization underlying information transfer across multiple brain areas remains unclear. Here, we combine transsynaptic viral tracing, optogenetic manipulations, and calcium dynamics recordings to dissect the multisynaptic functional connectivity of the amygdala. We identify a distinct basolateral amygdala (BLA) subpopulation that connects disynaptically to the periaqueductal gray (PAG) via the central amygdala (CeA). This disynaptic pathway serves as a core circuit element necessary for the learning and expression of conditioned fear and exhibits learning-related plasticity. Together, our findings demonstrate the utility of multisynaptic approaches for functional circuit analysis and indicate that disynaptic specificity may be a general feature of neuronal circuit organization.

2.
Elife ; 112022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001081

RESUMO

The developing neocortex exhibits spontaneous network activity with various synchrony levels, which has been implicated in the formation of cortical circuits. We previously reported that the development of callosal axon projections, one of the major long-range axonal projections in the brain, is activity dependent. However, what sort of activity and when activity is indispensable are not known. Here, using a genetic method to manipulate network activity in a stage-specific manner, we demonstrated that network activity contributes to callosal axon projections in the mouse visual cortex during a 'critical period': restoring neuronal activity during that period resumed the projections, whereas restoration after the period failed. Furthermore, in vivo Ca2+ imaging revealed that the projections could be established even without fully restoring highly synchronous activity. Overall, our findings suggest that spontaneous network activity is selectively required during a critical developmental time window for the formation of long-range axonal projections in the cortex.


Assuntos
Corpo Caloso , Córtex Visual , Animais , Axônios/fisiologia , Corpo Caloso/fisiologia , Camundongos , Neurônios/fisiologia , Córtex Visual/fisiologia
3.
Nature ; 594(7863): 403-407, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040259

RESUMO

Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Estimulação Acústica , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Extinção Psicológica , Feminino , Masculino , Camundongos , Inibição Neural , Neurônios/fisiologia
4.
Cereb Cortex ; 31(2): 1307-1315, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063102

RESUMO

Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Neurônios/química , Técnicas de Cultura de Órgãos , Córtex Visual/química , Vias Visuais/química
5.
Cell Rep ; 26(5): 1082-1088.e3, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699339

RESUMO

Finding the relationship between individual cognitive functions and cell-type-specific neuronal circuits is a central topic in neuroscience. In cats, the lateral geniculate nucleus (LGN) contains several cell types carrying spatially and temporally precise visual information. Whereas LGN cell types lack selectivity for motion direction, neurons in the primary visual cortex (area 17) exhibit sharp direction selectivity. Whether and how such de novo formation of direction selectivity depends on LGN cell types remains unknown. Here, we addressed this question using in vivo two-photon calcium imaging in cat area 17, which consists of two compartments receiving different combinations of inputs from the LGN cell types. The direction map in area 17 showed unique fragmented organization and was present only in small and distributed cortical domains. Moreover, direction-selective domains preferentially localized in specific compartments receiving Y and W inputs carrying low spatial frequency visual information, indicating that cell-type-specific thalamocortical projections constrain the formation of direction selectivity.


Assuntos
Mapeamento Encefálico , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Cálcio/metabolismo , Gatos , Feminino , Masculino , Especificidade de Órgãos , Fótons
6.
Nat Neurosci ; 18(12): 1780-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523644

RESUMO

Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity.


Assuntos
Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Percepção Visual/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Gravidez , Córtex Visual/citologia , Vias Visuais/citologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-23533083

RESUMO

Inhibitory interneurons play important roles in the development of brain functions. In the visual cortex, functional maturation of inhibitory interneurons is essential for ocular dominance plasticity. However, roles of inhibitory interneurons in the development of orientation and direction selectivity, fundamental properties of primary visual cortex, are less understood. We examined orientation and direction selectivity of neurons in GAD67-GFP (Δneo) mice, in which expression of GABA in the brain is decreased in the newborn. We used in vivo two-photon calcium imaging to examine visual response of neurons in these mice and found that long-term decrease of GABA led to increase of response amplitude to non-preferred orientation of visual stimuli, which decreased orientation selectivity. In contrast, direction selectivity was not affected. These results suggest that orientation selectivity is decreased in mice with GABA down-regulation during development.


Assuntos
Regulação para Baixo/genética , Glutamato Descarboxilase/deficiência , Glutamato Descarboxilase/metabolismo , Orientação/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/deficiência , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Técnicas de Introdução de Genes/métodos , Glutamato Descarboxilase/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Ácido gama-Aminobutírico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA