Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicon ; : 107777, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810888

RESUMO

Pufferfish saxitoxin- and tetrodotoxin (TTX)-binding protein (PSTBP) is considered to transfer TTX between tissues. The immunohistochemical distribution of PSTBP-homolog (PSTBPh) and TTX in the brain and pituitary of hatchery-reared juvenile tiger puffer Takifugu rubripes was investigated. PSTBPh was observed mainly in the pars intermedia of the pituitary. TTX was only detected in a TTX-fed fish in the neurohypophysis of the pituitary and in several other brain regions. The relationship between PSTBPh and TTX is discussed.

2.
Commun Biol ; 7(1): 88, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216631

RESUMO

In mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species. We show that in the tool-using wrasses, the telencephalon and the ventral part of the forebrain and midbrain are significantly enlarged compared to other teleost species but do not contain a larger proportion of cells. Instead, this size difference is due to large fiber tracts connecting the dorsal part of the telencephalon (pallium) to the inferior lobe, a ventral mesencephalic structure absent in amniotes. The high degree of connectivity between these structures in tool-using wrasses suggests that the inferior lobe could contribute to higher-order cognitive functions. We conclude that the evolution of non-telencephalic structures might have been key in the emergence of these cognitive functions in teleosts.


Assuntos
Comportamento de Utilização de Ferramentas , Animais , Telencéfalo , Prosencéfalo , Córtex Cerebral , Mesencéfalo , Mamíferos
3.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589544

RESUMO

G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimulation of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated signaling in zebrafish neurons and cardiomyocytes.


Assuntos
Miócitos Cardíacos , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Peixe-Zebra , Optogenética , Neurônios , Rodopsina
4.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589546

RESUMO

Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.


Assuntos
Parada Cardíaca , Miócitos Cardíacos , Animais , Adenilil Ciclases/genética , Peixe-Zebra , Rodopsinas Microbianas , Optogenética , Neurônios
5.
Zoolog Sci ; 40(2): 105-118, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042690

RESUMO

Visual pathways to the telencephalon in teleost fishes have been studied in detail only in a few species, and their evolutionary history remained unclear. On the basis of our recent studies we propose that there were two visual pathways in the common ancestor of teleosts, while one of them became lost in acanthopterygian fishes that emerged relatively recently. Our in-depth analyses on the connections of visual centers also revealed that there are connections shared with those of mammals, and retinotopic organization of the ascending connections is maintained at least to the level of the diencephalon in the yellowfin goby. The major visual telencephalic center, or the lateral part of the dorsal telencephalon (Dl), shows considerable species differences in the number of regions and cytoarchitecture. In particular, four highly specialized compartments are noted in the Dl of gobies, and we analyzed about 100 species of teleosts to investigate the evolution of the compartments in the Dl, which indicated that four compartments emerged only in Gobiiformes, while there are fewer specialized compartments in some other percomorph lineages. We also discuss the connections of forebrain visual centers with the cerebellum and other lower brain centers and infer possible functions of the circuitries.


Assuntos
Telencéfalo , Vias Visuais , Animais , Diencéfalo , Encéfalo , Peixes , Mamíferos
6.
J Comp Neurol ; 530(8): 1231-1246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34729771

RESUMO

Although all vertebrate cerebella contain granule cells, Purkinje cells, and efferent neurons, the cellular arrangement and neural circuitry are highly diverse. In amniotes, cerebellar efferent neurons form clusters, deep cerebellar nuclei, lie deep in the cerebellum, and receive synaptic inputs from Purkinje cells but not granule cells. However, in the cerebellum of teleosts, the efferent neurons, called eurydendroid cells, lie near the cell bodies of Purkinje cells and receive inputs both from axons of Purkinje cells and granule cell parallel fibers. It is largely unknown how the cerebellar structure evolved in ray-finned fish (actinopterygians). To address this issue, we analyzed the cerebellum of a bichir Polypterus senegalus, one of the most basal actinopterygians. We found that the cell bodies of Purkinje cells are not aligned in a layer; incoming climbing fibers terminate mainly on the basal portion of Purkinje cells, revealing that the Polypterus cerebellum has unique features among vertebrate cerebella. Retrograde labeling and marker analyses of the efferent neurons revealed that their cell bodies lie in restricted granular areas but not as deep cerebellar nuclei in the cerebellar white matter. The efferent neurons have long dendrites like eurydendroid cells, although they do not reach the molecular layer. Our findings suggest that the efferent system of the bichir cerebellum has intermediate features between teleosts and amniote vertebrates, and provides a model to understand the basis generating diversity in actinopterygian cerebella.


Assuntos
Cerebelo , Células de Purkinje , Animais , Axônios , Peixes/anatomia & histologia , Neurônios
7.
Artigo em Inglês | MEDLINE | ID: mdl-34737084

RESUMO

We tested whether crowding stress affects the hypothalamo-pituitary-interrenal (HPI) axis of the self-fertilizing fish, Kryptolebias marmoratus, which is known to be aggressive in the laboratory conditions but sometimes found as a group from a single land crab burrow in the wild. The projection of corticotropin-releasing hormone (CRH) neurons to the adrenocorticotropic hormone (ACTH) cells in the pituitary was confirmed by dual-label immunohistochemistry; CRH-immunoreactive (ir) fibers originating from cell bodies located in the lateral tuberal nucleus (NLT) of the hypothalamus were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Then, fish were reared solitary or in pairs for 14 days, and the number of CRH-ir cell bodies in the NLT of the hypothalamus and cortisol levels in the body without head region were compared. The number of CRH-ir cell bodies and cortisol levels were significantly higher in paired fish. These results indicate that crowding stress affects the HPI axis in K. marmoratus which thrive in small burrows with limited water volume.


Assuntos
Ciprinodontiformes/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Peixes Listrados/fisiologia , Autofertilização/fisiologia , Hormônio Adrenocorticotrópico/fisiologia , Animais , Hormônio Liberador da Corticotropina/fisiologia , Ciprinodontiformes/anatomia & histologia , Feminino , Proteínas de Peixes/fisiologia , Organismos Hermafroditas/fisiologia , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Imuno-Histoquímica , Rim/fisiologia , Peixes Listrados/anatomia & histologia , Masculino , Fibras Nervosas/fisiologia , Estresse Fisiológico
8.
J Neuroendocrinol ; 34(5): e13068, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34931380

RESUMO

Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).


Assuntos
Hormônio Liberador de Gonadotropina , Peixe-Zebra , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Mamíferos , Neurônios/metabolismo , Receptores LHRH/metabolismo
9.
J Comp Neurol ; 529(1): 87-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32337719

RESUMO

The nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby. We therefore investigated the full set of afferent and efferent connections of the PTh by direct tracer injections into the nucleus. Injections into the PTh labeled cells in the optic tectum, ventromedial thalamic nucleus, central and medial parts of the dorsal telencephalon, and caudal lobe of the cerebellum. We found that the somata of most tecto-prethalamic neurons are present in the stratum periventriculare. Their dendrites ascend to reach the major retinorecipient layers of the tectum. The PTh is composed of two subnuclei (medial and lateral) and topographic organization was appreciated only for tectal projections to the lateral subnucleus (PTh-l), which also receives sparse retinal projections. In contrast, the medial subnucleus receives fibers only from the medial tectum. We found that the PTh projects to nine subregions in the dorsal telencephalon and four in the ventral telencephalon. Furthermore, cerebellar injections revealed that cerebello-prethalamic fibers cross the midline twice to innervate the PTh-l on both sides. The present study is the first detailed report on the full set of the connections of PTh, which suggests that the PTh relays visual information from the optic tectum to the telencephalon.


Assuntos
Vias Aferentes/anatomia & histologia , Vias Eferentes/anatomia & histologia , Colículos Superiores/anatomia & histologia , Telencéfalo/anatomia & histologia , Núcleos Talâmicos/anatomia & histologia , Vias Visuais/anatomia & histologia , Vias Aferentes/citologia , Animais , Vias Eferentes/citologia , Feminino , Peixes , Masculino , Colículos Superiores/citologia , Telencéfalo/citologia , Núcleos Talâmicos/citologia , Vias Visuais/citologia
10.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32896272

RESUMO

Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.


Assuntos
Evolução Biológica , Linhagem da Célula , Núcleos Talâmicos/embriologia , Vias Visuais/embriologia , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/embriologia
11.
Dev Biol ; 455(2): 393-408, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323192

RESUMO

The cerebellum and the cerebellum-like structure in the mesencephalic tectum in zebrafish contain multiple cell types, including principal cells (i.e., Purkinje cells and type I neurons) and granule cells, that form neural circuits in which the principal cells receive and integrate inputs from granule cells and other neurons. It is largely unknown how these cells are positioned and how neural circuits form. While Reelin signaling is known to play an important role in cell positioning in the mammalian brain, its role in the formation of other vertebrate brains remains elusive. Here we found that zebrafish with mutations in Reelin or in the Reelin-signaling molecules Vldlr or Dab1a exhibited ectopic Purkinje cells, eurydendroid cells (projection neurons), and Bergmann glial cells in the cerebellum, and ectopic type I neurons in the tectum. The ectopic Purkinje cells and type I neurons received aberrant afferent fibers in these mutants. In wild-type zebrafish, reelin transcripts were detected in the internal granule cell layer, while Reelin protein was localized to the superficial layer of the cerebellum and the tectum. Laser ablation of the granule cell axons perturbed the localization of Reelin, and the mutation of both kif5aa and kif5ba, which encode major kinesin I components in the granule cells, disrupted the elongation of granule cell axons and the Reelin distribution. Our findings suggest that in zebrafish, (1) Reelin is transported from the granule cell soma to the superficial layer by axonal transport; (2) Reelin controls the migration of neurons and glial cells from the ventricular zone; and (3) Purkinje cells and type I neurons attract afferent axons during the formation of the cerebellum and the cerebellum-like structure.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Cerebelo/embriologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serina Endopeptidases/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Sistemas CRISPR-Cas , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Cerebelo/citologia , Proteínas da Matriz Extracelular/genética , Cinesinas/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Células de Purkinje/citologia , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética
12.
J Morphol ; 280(4): 526-533, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735283

RESUMO

We identified a morphologically uncommon piscine retractor lentis muscle in the yellowfin goby Acanthogobius flavimanus. This lentis muscle has a shape similar to the Greek small letter lambda (λ). The two legs of the muscle are attached to the retinal periphery at the ventral eyecup, while the tip is connected to the lens surface by a ligament. Scanning electron microscopy showed that the fibers of the lentis muscle run along the length of both the anterior and posterior legs. Immunolabeling with antiacetylated tubulin antibody and neuronal tracing with DiI of the whole lentis muscle revealed that the anterior leg is innervated by one or more nerves. The topographic distribution of ganglion cells in the retina was investigated to identify the visual axis. Three high cell density areas were observed in the dorso-temporal, ventro-nasals and ventro-temporal retina. These findings suggest that the λ-shaped lentis muscle may enable accommodatory movement of the lens toward the temporal as well as the nasal and/or ventral retina.


Assuntos
Músculos/anatomia & histologia , Perciformes/anatomia & histologia , Acetilação , Animais , Contagem de Células , Fluorescência , Cristalino/citologia , Ligamentos/ultraestrutura , Músculos/ultraestrutura , Células Ganglionares da Retina/citologia , Tubulina (Proteína)/metabolismo
13.
J Comp Neurol ; 527(4): 874-900, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30516281

RESUMO

Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.


Assuntos
Atlas como Assunto , Peixes/anatomia & histologia , Telencéfalo/citologia , Animais , Biomarcadores/análise , Transcriptoma
14.
J Comp Neurol ; 526(10): 1733-1746, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29638003

RESUMO

Dual visual pathways reaching the telencephalon appear to be an ancient vertebrate trait, but some teleost fish seem to possess only one pathway via the optic tectum. We undertook the present study to determine if and when this loss occurred during evolution. Tracer injection experiments to the optic nerve, the optic tectum, and the dorsal telencephalon were performed in the present study, to investigate ascending visual pathways to the dorsal telencephalon in an acanthopterygian teleost, the yellowfin goby Acanthogobius flavimanus (Temminck & Schlegel, 1845). We confirmed the presence of a nucleus prethalamicus (PTh) in the goby, which has been convincingly identified only in holocentrids, suggesting that this nucleus is present in other acanthopterygians. We found that the optic tectum projects to the PTh bilaterally. The PTh projects in turn to the dorsal telencephalon, ipsilaterally. These results suggest that the yellowfin goby possesses only an extrageniculate-like pathway, while a geniculate-like pathway could not be identified. This situation is common with that of holocentrids and may be a character common in acanthopterygians. It is possible that a geniculate-like system was lost in the common ancestor of acanthopterygians, although the scenario for the evolution of ascending visual systems in actinopterygians remains uncertain due to the lack of precise knowledge in a number of actinopterygian taxons.


Assuntos
Peixes/fisiologia , Colículos Superiores/fisiologia , Telencéfalo/fisiologia , Núcleos Talâmicos/fisiologia , Vias Visuais/fisiologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Feminino , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Masculino , Nervo Óptico/citologia , Nervo Óptico/fisiologia , Retina/fisiologia
15.
Dev Growth Differ ; 59(4): 188-193, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28509386

RESUMO

In this article we review descending neural pathways to the spinal cord in teleosts, compared with mammals. Descending pathways to the spinal cord are crucial in controlling various behaviors in vertebrates. The major difference between teleosts and mammals is the lack of corticospinal (or palliospinal) tracts. Other descending pathways, which originate from the brain stem, are basically identical in teleosts and mammals. This suggests the presence of common systems in the spinal motor control by higher order centers. The homologue of nucleus ruber remained unclear in teleosts until recently, and this review pays special attention to the rubrospinal tract.


Assuntos
Peixes/embriologia , Mamíferos/embriologia , Medula Espinal/embriologia , Vertebrados/embriologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA