Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 13(6): 7914-7930, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33735837

RESUMO

Declines in mitochondrial mass are thought to be a hallmark of mammalian aging, and a ketogenic diet (KD) may prevent the age-related decreases in mitochondrial content. The objective of this study was to investigate the impact of a KD on markers of mitochondrial mass. Mice were fed an isocaloric control diet (CD) or KD from 12 months of age. Tissues were collected after 1 month and 14 months of intervention, and a panel of commonly used markers of mitochondrial mass (mitochondrial enzyme activities and levels, mitochondrial to nuclear DNA ratio, and cardiolipin content) were measured. Our results showed that a KD stimulated activities of marker mitochondrial enzymes including citrate synthase, Complex I, and Complex IV in hindlimb muscle in aged mice. KD also increased the activity of citrate synthase and prevented an age-related decrease in Complex IV activity in aged brain. No other markers were increased in these tissues. Furthermore, the impacts of a KD on liver and kidney were mixed with no pattern indicative of a change in mitochondrial mass. In conclusion, results of the present study suggest that a KD induces tissue-specific changes in mitochondrial enzyme activities, or structure, rather than global changes in mitochondrial mass across tissues.


Assuntos
Dieta Cetogênica , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Camundongos
3.
Cell Metab ; 26(3): 539-546.e5, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877457

RESUMO

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.


Assuntos
Dieta Cetogênica , Saúde , Longevidade/fisiologia , Acetilação , Adaptação Fisiológica , Animais , Dieta com Restrição de Carboidratos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Transdução de Sinais
4.
J Biol Chem ; 291(24): 12575-12585, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27059956

RESUMO

Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo.


Assuntos
Acetil-CoA C-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Acetil-CoA C-Aciltransferase/genética , Animais , Ligação Competitiva , Western Blotting , Linhagem Celular , Metabolismo Energético , Ácidos Graxos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Células NIH 3T3 , Oxirredução , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
5.
Biochem Biophys Rep ; 7: 273-286, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28133633

RESUMO

Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, such as fructose-2,6-bisphosphate, matched the activity of metabolic pathways. Protein levels of glycolytic and gluconeogenic enzymes were not different. pAMPK protein levels increased with fasting and were higher in ShcKO versus WT mice. Therefore, Shc proteins play a role in shifting the metabolism from glucose oxidation to gluconeogenesis and lipid catabolism and should be considered as regulators of fuel selection. Fuel selection and utilization could play a critical role in healthy aging. Characterization of metabolic events in ShcKO mice would help to elucidate how metabolism is influenced by these proteins.

6.
Biogerontology ; 16(5): 655-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25860863

RESUMO

The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Gorduras na Dieta/administração & dosagem , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fatores Etários , Envelhecimento/patologia , Apoptose , Gorduras na Dieta/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Óleos de Peixe/administração & dosagem , Óleos de Peixe/metabolismo , Peroxidação de Lipídeos , Longevidade , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/ultraestrutura , Mitocôndrias Musculares/ultraestrutura , Modelos Biológicos , Músculo Esquelético/ultraestrutura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Óleo de Soja/administração & dosagem , Óleo de Soja/metabolismo , Fatores de Tempo
7.
PLoS One ; 10(4): e0124204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25880638

RESUMO

Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO) and wild-type (WT) controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1) and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase) were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.


Assuntos
Glicólise , Músculo Esquelético/enzimologia , Proteínas Adaptadoras da Sinalização Shc/genética , Animais , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glicogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexo Piruvato Desidrogenase/metabolismo
8.
J Gerontol A Biol Sci Med Sci ; 70(10): 1181-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313149

RESUMO

Calorie restriction (CR) without malnutrition extends life span in several animal models. It has been proposed that a decrease in the amount of polyunsaturated fatty acids (PUFAs), and especially n-3 fatty acids, in membrane phospholipids may contribute to life span extension with CR. Phospholipid PUFAs are sensitive to dietary fatty acid composition, and thus, the purpose of this study was to determine the influence of dietary lipids on life span in CR mice. C57BL/6J mice were assigned to four groups (a 5% CR control group and three 40% CR groups) and fed diets with soybean oil (high in n-6 PUFAs), fish oil (high in n-3 PUFAs), or lard (high in saturated and monounsaturated fatty acids) as the primary lipid source. Life span was increased (p < .05) in all CR groups compared to the Control mice. Life span was also increased (p < .05) in the CR lard mice compared to animals consuming either the CR fish or soybean oil diets. These results indicate that dietary lipid composition can influence life span in mice on CR, and suggest that a diet containing a low proportion of PUFAs and high proportion of monounsaturated and saturated fats may maximize life span in animals maintained on CR.


Assuntos
Restrição Calórica , Gorduras na Dieta , Longevidade , Animais , Ácidos Graxos , Ácidos Graxos Monoinsaturados , Ácidos Graxos Insaturados , Óleos de Peixe , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Soja
9.
Aging Cell ; 13(6): 1049-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257068

RESUMO

Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole-body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well-established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc-deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high-fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin-dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid-oxidative enzymes was observed in ShcKO BAT. Levels of brown fat-specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Adaptadoras da Sinalização Shc/deficiência , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Animais , Metabolismo Energético , Camundongos , Camundongos Knockout , Termogênese/fisiologia
10.
J Gerontol A Biol Sci Med Sci ; 69(10): 1177-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24336818

RESUMO

The signaling molecule p66Shc is often described as a longevity protein. This conclusion is based on a single life span study that used a small number of mice. The purpose of the present studies was to measure life span in a sufficient number of mice to determine if longevity is altered in mice with decreased Shc levels (ShcKO). Studies were completed at UC Davis and the European Institute of Oncology (EIO). At UC Davis, male C57BL/6J WT and ShcKO mice were fed 5% or 40% calorie-restricted (CR) diets. In the 5% CR group, there was no difference in survival curves between genotypes. There was also no difference between genotypes in prevalence of neoplasms or other measures of end-of-life pathology. At 40% calorie restriction group, 70th percentile survival was increased in ShcKO, while there were no differences between genotypes in median or subsequent life span measures. At EIO, there was no increase in life span in ShcKO male or female mice on C57BL/6J, 129Sv, or hybrid C57BL/6J-129Sv backgrounds. These studies indicate that p66Shc is not a longevity protein. However, additional studies are needed to determine the extent to which Shc proteins may influence the onset and severity of specific age-related diseases.


Assuntos
Longevidade , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Criação de Animais Domésticos , Animais , Restrição Calórica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
11.
Life Sci ; 93(24): 941-8, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24140885

RESUMO

AIMS: The purpose of the study was to establish if enzyme activities from key metabolic pathways and levels of markers of oxidative damage to proteins and lipids differed between distinct liver mitochondrial sub-populations, and which specific sub-populations contributed to these differences. MAIN METHODS: Male C57BL/6J mice were fed non-purified diet for one month then separated into two groups, control and calorie-restricted (CR). The two groups were fed semi-purified diet (AIN93G), with the CR group receiving 40% less calories than controls. After two months, enzyme activities and markers of oxidative damage in mitochondria were determined. KEY FINDINGS: In all mitochondrial sub-populations, enzyme activities and markers of oxidative damage, from control and CR groups, showed a pattern of M1>M3>M10. Higher acyl-CoA dehydrogenase (ß-oxidation) and ß-hydroxybutyrate dehydrogenase (ketogenesis) activities and lower carbonyl and TBARS levels were observed in M1 and M3 fractions from CR mice. ETC enzyme activities did not show a consistent pattern. In the Krebs cycle, citrate synthase and aconitase activities decreased while succinate dehydrogenase and malate dehydrogenase activities increased in the M1 mitochondria from the CR versus control mice. SIGNIFICANCE: CR does not produce uniform changes in enzyme activities or markers of oxidative damage in mitochondrial sub-populations, with changes occurring primarily in the heavy mitochondrial populations. Centrifugation at 10,000 g to isolate mitochondria likely dilutes the mitochondrial populations which show the greatest response to CR. Use of lower centrifugal force (3000 g or lower) may be beneficial for some studies.


Assuntos
Restrição Calórica , Mitocôndrias Hepáticas/enzimologia , Estresse Oxidativo/fisiologia , Aconitato Hidratase/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/fisiologia , Carbonilação Proteica/efeitos dos fármacos , Succinato Desidrogenase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Biosci Rep ; 33(1): 83-95, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23098316

RESUMO

To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H(2)O(2) production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.


Assuntos
Restrição Calórica , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Peso Corporal , Dieta , Gorduras na Dieta/farmacologia , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ativação Enzimática , Óleos de Peixe/farmacologia , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Óleo de Soja/farmacologia , Fatores de Tempo
13.
Metabolism ; 61(12): 1703-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22683097

RESUMO

OBJECTIVES: ShcKO mice have low body fat and resist weight gain on a high fat diet, indicating that Shc proteins may influence enzymes involved in ß-oxidation. To investigate this idea, the activities of ß-oxidation and ketone body metabolism enzymes were measured. METHODS: The activities of ß-oxidation enzymes (acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and ketoacyl-CoA thiolase) in liver and hindlimb skeletal muscle, ketolytic enzymes (acetoacetyl-CoA thiolase, ß-hydroxybutyrate dehydrogenase and 3-oxoacid-CoA transferase) in skeletal muscle, and ketogenic enzymes (acetoacetyl-CoA thiolase and ß-hydroxybutyrate dehydrogenase) in liver were measured from wild-type and ShcKO mice. RESULTS: The activities of ß-oxidation enzymes were increased (P<.05) in the ShcKO compared to wild-type mice in the fasted but not the fed state. In contrast, no uniform increases in the ketolytic enzyme activities were observed between ShcKO and wild-type mice. In liver, the activities of ketogenic enzymes were increased (P<.05) in ShcKO compared to wild-type mice in both the fed and fasted states. Levels of phosphorylated hormone sensitive lipase from adipocytes were also increased (P<.05) in fasted ShcKO mice. CONCLUSION: These studies indicate that the low Shc levels in ShcKO mice result in increased liver and muscle ß-oxidation enzyme activities in response to fasting and induce chronic increases in the activity of liver ketogenic enzymes. Decreases in the level of Shc proteins should be considered as possible contributors to the increase in activity of fatty acid oxidation enzymes in response to physiological conditions which increase reliance on fatty acids as a source of energy.


Assuntos
Corpos Cetônicos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acil-CoA Desidrogenase/metabolismo , Animais , Western Blotting , Respiração Celular , Coenzima A-Transferases/metabolismo , DNA Mitocondrial , Ingestão de Alimentos , Eletroforese , Jejum , Membro Posterior , Hidroxibutirato Desidrogenase/metabolismo , Lipase/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Oxirredução , Fosforilação , Reação em Cadeia da Polimerase/métodos
14.
J Gerontol A Biol Sci Med Sci ; 67(11): 1121-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22503990

RESUMO

To investigate the role mitochondrial membrane lipids play in the actions of calorie restriction (CR), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and fed diets containing soybean oil (also in the control diet), fish oil, or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak, and H(2)O(2) production were measured in muscle mitochondria following 1 month of CR. The results indicate that phospholipid fatty acids reflected the polyunsaturated fatty acid profile of the dietary lipid sources. Capacity for Complex I- and III-linked H(2)O(2) production was decreased with CR, although there was no difference between CR groups. The CR lard group had lower proton leak than all other groups. The results indicate that a decreased degree of unsaturation in muscle mitochondrial membranes is not required for reduced H(2)O(2) production with CR. However, dietary lipids do have some influence on proton leak with CR.


Assuntos
Restrição Calórica , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Análise de Variância , Animais , Peso Corporal , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fosforilação Oxidativa , Consumo de Oxigênio , Distribuição Aleatória , Valores de Referência , Fatores de Risco , Estatísticas não Paramétricas , Fatores de Tempo
15.
Aging Cell ; 11(1): 162-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22081964

RESUMO

Deletion of the p66(Shc) gene results in lean and healthy mice, retards aging, and protects from aging-associated diseases, raising the question of why p66(Shc) has been selected, and what is its physiological role. We have investigated survival and reproduction of p66(Shc)-/- mice in a population living in a large outdoor enclosure for a year, subjected to food competition and exposed to winter temperatures. Under these conditions, deletion of p66(Shc) was strongly counterselected. Laboratory studies revealed that p66(Shc)-/- mice have defects in fat accumulation, thermoregulation, and reproduction, suggesting that p66(Shc) has been evolutionarily selected because of its role in energy metabolism. These findings imply that the health impact of targeting aging genes might depend on the specific energetic niche and caution should be exercised against premature conclusions regarding gene functions that have only been observed in protected laboratory conditions.


Assuntos
Envelhecimento/genética , Longevidade/genética , Proteínas Adaptadoras da Sinalização Shc/genética , Envelhecimento/metabolismo , Animais , Evolução Biológica , Regulação da Temperatura Corporal/genética , Metabolismo Energético/genética , Feminino , Aptidão Genética/genética , Heterozigoto , Homozigoto , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Estações do Ano , Proteínas Adaptadoras da Sinalização Shc/deficiência , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
16.
J Bioenerg Biomembr ; 43(3): 227-36, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21505800

RESUMO

Calorie restriction (CR) has been shown to decrease H(2)O(2) production in liver mitochondria, although it is not known if this is due to uniform changes in all mitochondria or changes in particular mitochondrial sub-populations. To address this issue, liver mitochondria from control and CR mice were fractionated using differential centrifugation at 1,000 g, 3,000 g and 10,000 g into distinct populations labeled as M1, M3 and M10, respectively. Mitochondrial protein levels, respiration and H(2)O(2) production were measured in each fraction. CR resulted in a decrease in total protein (mg) in each fraction, although this difference disappeared when adjusted for liver weight (mg protein/g liver weight). No differences in respiration (State 3 or 4) were observed between control and CR mice in any of the mitochondrial fractions. CR decreased H(2)O(2) production in all fractions when mitochondria respired on succinate (Succ), succ+antimycin A (Succ+AA) or pyruvate/malate+rotenone (P/M+ROT). Thus, CR decreased reactive oxygen species (ROS) production under conditions which stimulate mitochondrial complex I ROS production under both forward (P/M+ROT) and backward (Succ & Succ+AA) electron flow. The results indicate that CR decreases H(2)O(2) production in all liver mitochondrial fractions due to a decrease in capacity for ROS production by complex I of the electron transport chain.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Restrição Calórica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
17.
Aging Cell ; 10(1): 55-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21040401

RESUMO

Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.


Assuntos
Adiposidade/genética , Insulina/metabolismo , Isoformas de Proteínas/genética , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Gorduras na Dieta/metabolismo , Feminino , Loci Gênicos/fisiologia , Glucose/metabolismo , Resistência à Insulina/genética , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Isoformas de Proteínas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Magreza/genética , Magreza/metabolismo
18.
PLoS One ; 5(9): e12696, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20856881

RESUMO

The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS) production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6:n-3 ratio on liver mitochondrial H(2)O(2) production and electron transport chain (ETC) activity. There was an increase in n-3 fatty acids and a decrease in the n-6:n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05) in the activity of ETC complex I and increases (p<0.05) in the activities of complexes III and IV. Mitochondrial H(2)O(2) production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05) in the fat-1 mice. This change in H(2)O(2) production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Peróxido de Hidrogênio/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo
19.
J Biol Chem ; 285(2): 1153-65, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19892704

RESUMO

A decrease in reactive oxygen species (ROS) production has been associated with extended life span in animal models of longevity. Mice deficient in the p66Shc gene are long-lived, and their cells are both resistant to oxidative stress and produce less ROS. Our microarray analysis of p66Shc(-/-) mouse tissues showed alterations in transcripts involved in heme and superoxide production and insulin signaling. Thus, we carried out analysis of ROS production by NADPH oxidase (PHOX) in macrophages of control and p66Shc knock-out mice. p66Shc(-/-) mice had a 40% reduction in PHOX-dependent superoxide production. To confirm whether the defect in superoxide production was a direct consequence of p66Shc deficiency, p66Shc was knocked down with siRNA in the macrophage cell line RAW264, and a 30% defect in superoxide generation was observed. The pathway of PHOX-dependent superoxide generation was investigated. PHOX protein levels were not decreased in mutant macrophages; however, the rate and extent of phosphorylation of p47phox was decreased in mutants, as was membrane translocation of the complex. Consistently, phosphorylation of protein kinase Cdelta, Akt, and ERK (the kinases responsible for phosphorylation of p47phox) was decreased. Thus, p66Shc deficiency causes a defect in activation of the PHOX complex that results in decreased superoxide production. p66Shc-deficient mice have recently been observed to be resistant to atherosclerosis and to oxidant injury in kidney and brain. Because phagocyte-derived superoxide is often a component of oxidant injury and inflammation, we suggest that the decreased superoxide production by PHOX in p66Shc-deficient mice could contribute significantly to their relative protection from oxidant injury and consequent longevity.


Assuntos
Longevidade , NADPH Oxidases/metabolismo , Estresse Oxidativo , Proteínas Adaptadoras da Sinalização Shc , Superóxidos/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
20.
Biogerontology ; 10(4): 471-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18953666

RESUMO

The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactate/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing.


Assuntos
Envelhecimento/metabolismo , Aldeído Redutase/metabolismo , Restrição Calórica , L-Iditol 2-Desidrogenase/metabolismo , Fígado/enzimologia , Sorbitol/metabolismo , Fatores Etários , Animais , Frutose/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Malatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , NADP/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA