Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(33): 39539-39549, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37614002

RESUMO

While two-dimensional (2D) materials possess the desirable future of neuromorphic computing platforms, unstable charging and de-trapping processes, which are inherited from uncontrollable states, such as the interface trap between nanocrystals and dielectric layers, can deteriorate the synaptic plasticity in field-effect transistors. Here, we report a facile and effective strategy to promote artificial synaptic devices by providing physical doping in 2D transition-metal dichalcogenide nanomaterials. Our experiments demonstrate that the introduction of niobium (Nb) into 2D WSe2 nanomaterials produces charge trap levels in the band gap and retards the decay of the trapped charges, thereby accelerating the artificial synaptic plasticity by encouraging improved short-/long-term plasticity, increased multilevel states, lower power consumption, and better symmetry and asymmetry ratios. Density functional theory calculations also proved that the addition of Nb to 2D WSe2 generates defect tolerance levels, thereby governing the charging and de-trapping mechanisms of the synaptic devices. Physically doped electronic synapses are expected to be a promising strategy for the development of bioinspired artificial electronic devices.

2.
ACS Appl Mater Interfaces ; 15(14): 18463-18472, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36881815

RESUMO

While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.

3.
Nat Commun ; 13(1): 3467, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725850

RESUMO

The need for miniaturized and high-performance devices has attracted enormous attention to the development of quantum silicon nanowires. However, the preparation of abundant quantities of silicon nanowires with the effective quantum-confined dimension remains challenging. Here, we prepare highly dense and vertically aligned sub-5 nm silicon nanowires with length/diameter aspect ratios greater than 10,000 by developing a catalyst-free chemical vapor etching process. We observe an unusual lattice reduction of up to 20% within ultra-narrow silicon nanowires and good oxidation stability in air compared to conventional silicon. Moreover, the material exhibits a direct optical bandgap of 4.16 eV and quasi-particle bandgap of 4.75 eV with the large exciton binding energy of 0.59 eV, indicating the significant phonon and electronic confinement. The results may provide an opportunity to investigate the chemistry and physics of highly confined silicon quantum nanostructures and may explore their potential uses in nanoelectronics, optoelectronics, and energy systems.

4.
Small ; 18(19): e2200919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35417095

RESUMO

Dendrite growth and in-homogeneous solid electrolyte interphase (SEI) buildup of Li metal anodes hinder the longtime discharge-charge cycling and safety in secondary metal batteries. Here, the authors report an in-situ restructured artificial lithium/electrolyte SEI exposing an ultrasmooth and thin layer mediated through graphene quantum dots (GQDs). The reformed artificial interphase comprises a mixture of organic/inorganic-rich compositions alike as mosaic interphase, albeit the synergistic effect mediated via hydroxylated GQDs involving redeposition-borne lithium, and its accumulated salts, facilitate a homogeneous and ultrasmooth near fluorine-rich interfacial environment ensuring a facile lithium-ion (Li-ion) diffusion and dendritic-free nature. As a result, symmetrical graphene dots-lithium cells enable a dendrite-less operation up to 2000 h with good cycling stability and capacity retention at current densities 1 and 5 mA cm-2 compared to bare lithium. The well-established fluorinated interface engenders a high reversible capacity and stable performance during the initial and long-term cycles upon configuring in lithium-sulfur (Li-S) cells. Thus, the authors' work illuminates the direction toward achieving dendritic-free smooth and robust metal anodes through manipulating and restructuring the critical SEI chemical components.

5.
ACS Nano ; 16(3): 3637-3646, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35166540

RESUMO

Atomic-layered materials, such as high-quality bismuth oxychalcogenides, which are composed of oppositely charged alternate layers grown using chemical vapor deposition, have attracted considerable attention. Their physical properties are well-suited for high-speed, low-power-consumption optoelectronic devices, and the rapid determination of their crystallographic characteristics is crucial for scalability and integration. In this study, we introduce how the crystallographic structure and quality of such materials can be projected through Raman spectroscopy analysis. Frequency modes at ∼55, ∼78, ∼360, and ∼434 cm-1 were detected, bearing out theoretical calculations from the literature. The low-frequency modes positioned at 55 and 78 cm-1 were activated by structural defects, such as grain boundaries and O-rich edges in the Bi2O2Se crystals, accompanied by sensitivity to the excitation energy. Furthermore, the line defects at ∼55 cm-1 exhibited a strong 2-fold polarization dependence, similar to graphene/graphite edges. Our results can help illuminate the mechanism for activating the Raman-active mode from the infrared active mode by defects, as well as the electronic structures of these two-dimensional layered materials. We also suggest that the nanoscale width line defects in Bi2O2Se can be visualized using Raman spectroscopy.

6.
iScience ; 25(1): 103660, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024590

RESUMO

Novel gas sensors that work at room temperature are attracting attention due to their low energy consumption and stability in the presence of toxic gases. However, the development of sensing characteristics at room temperature is still a primary challenge. Diverse reaction pathways and low adsorption energy for gas molecules are required to fabricate a gas sensor that works at room temperature with high sensitivity, selectivity, and efficiency. Therefore, we enhanced the gas sensing performance at room temperature by constructing hybridized nanostructure of 1D-2D hybrid of SnSe2 layers and SnO2 nanowire networks and by controlling the back-gate bias (Vg = 1.5 V). The response time was dramatically reduced by lowering the energy barrier for the adsorption on the reactive sites, which are controlled by the back gate. Consequently, we believe that this research could contribute to improving the performance of gas sensors that work at room temperature.

7.
Nano Lett ; 21(18): 7879-7886, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34328342

RESUMO

Artificial synaptic platforms are promising for next-generation semiconductor computing devices; however, state-of-the-art optoelectronic approaches remain challenging, owing to their unstable charge trap states and limited integration. We demonstrate wide-band-gap (WBG) III-V materials for photoelectronic neural networks. Our experimental analysis shows that the enhanced crystallinity of WBG synapses promotes better synaptic characteristics, such as effective multilevel states, a wider dynamic range, and linearity, allowing the better power consumption, training, and recognition accuracy of artificial neural networks. Furthermore, light-frequency-dependent memory characteristics suggest that artificial optoelectronic synapses with improved crystallinity support the transition from short-term potentiation to long-term potentiation, implying a clear emulation of the psychological multistorage model. This is attributed to the charge trapping in deep-level states and suppresses fast decay and nonradiative recombination in shallow traps. We believe that the fingerprints of these WBG synaptic characteristics provide an effective strategy for establishing an artificial optoelectronic synaptic architecture for innovative neuromorphic computing.


Assuntos
Redes Neurais de Computação , Sinapses , Fótons
8.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957578

RESUMO

The synthesis of controllable hollow graphitic architectures can engender revolutionary changes in nanotechnology. Here, we present the synthesis, processing, and possible applications of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon nanotubes-carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be fabricated by using a highly designed short anodized alumina oxide nanochannels, followed by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is mechanically flexible, highly conductive, and optically transparent, making the film attractive for various applications such as multifunctional and high-performance electrodes for energy storage devices, nanoscale containers for nanogram quantities of materials, and nanometrology.

9.
Nanomaterials (Basel) ; 10(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050595

RESUMO

In this study, the charge transport mechanism of Pd/Si-based FS-GaN Schottky diodes was investigated. A temperature-dependent current-voltage analysis revealed that the I-V characteristics of the diodes show a good rectifying behavior with a large ratio of 103-105 at the forward to reverse current at ±1 V. The interface states and non-interacting point defect complex between the Pd metal and FS-GaN crystals induced the inhomogeneity of the barrier height and large ideality factors. Furthermore, we revealed that the electronic conduction of the devices prefers the thermionic field emission (TFE) transport, not the thermionic emission (TE) model, over the entire measurement conditions. The investigation on deep level transient spectroscopy (DLTS) suggests that non-interacting point-defect-driven tunneling influences the charge transport. This investigation about charge transport paves the way to achieving next-generation optoelectronic applications using Si-based FS-GaN Schottky diodes.

10.
Sci Rep ; 10(1): 2076, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034209

RESUMO

While non-polar nanostructured-GaN crystals are considered as a prospective material for the realization of futuristic opto-electronic application, the formation of non-polar GaN nanocrystals (NCs) with highly efficient visible emission characteristics remain unquestionable up to now. Here, we report the oxygen-incorporated a-plane GaN NCs with highly visible illumination excitonic recombination characteristics. Epitaxially aligned a-plane NCs with average diameter of 100 nm were formed on r-plane sapphire substrates by hydride vapor phase epitaxy (HVPE), accompanied by the oxygen supply during the growth. X-ray photoemission spectroscopy measurements proved that the NCs exhibited Ga-O bonding in the materials, suggesting the formation of oxidized states in the bandgap. It was found that the NCs emitted the visible luminescence wavelength of 400‒500 nm and 680‒720 nm, which is attributed to the transition from oxygen-induced localized states. Furthermore, time-resolved photoluminescence studies revealed the significant suppression of the quantum confined Stark effect and highly efficient excitonic recombination within GaN NCs. Therefore, we believe that the HVPE non-polar GaN NCs can guide the simple and efficient way toward the nitride-based next-generation nano-photonic devices.

11.
ACS Appl Mater Interfaces ; 10(36): 30640-30648, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117322

RESUMO

Increased interest in two-dimensional (2D) materials and heterostructures for use as components of electrical devices has led to the use of an atomically mixed phase between semiconducting and metallic transition metal dichalcogenides that exhibited enhanced interfacial characteristics. To understand the lattice structure and properties of 2D materials on the atomic scale, diverse characterization methods such as Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray photoemission spectroscopy (XPS) have been applied. However, determination of the exact chemical distribution, which is a critical factor for the interfacial layer, was hindered by limitations of these typical methods. In this work, atom-probe tomography (APT) was introduced for the first time to analyze the three-dimensional atomic distribution and composition variation of the atomic-scale multilayered alloy structure W xNb(1- x)Se2. Composition profiles and theoretical calculations for each atom demonstrated the reaction kinetics and stoichiometric inhomogeneity of the W xNb(1- x)Se2 layer. The role of the intermediate layer was investigated by fabrication of a WSe2-based field-effect transistor. Introduction of W xNb(1- x)Se2 between metallic NbSe2 and semiconducting WSe2 layers resulted in improved charge transport with lowering of the contact barrier.

12.
ACS Appl Mater Interfaces ; 9(42): 37146-37153, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976735

RESUMO

Molybdenum disulfide with atomic-scale flatness has application potential in high-speed and low-power logic devices owing to its scalability and intrinsic high mobility. However, to realize viable technologies based on two-dimensional materials, techniques that enable their large-area growth with high quality and uniformity on wafer cale is a prerequisite. Here, we provide a route toward highly uniform growth of a wafer-scale, four-layered MoS2 film on a 2 in. substrate via a sequential process consisting of the deposition of a molybdenum trioxide precursor film by sputtering followed by postsulfurization using a chemical vapor deposition process. Spatial spectroscopic analyses by Raman and PL mapping validated that the as-synthesized MoS2 thin films exhibit high uniformity on a 2 in. sapphire substrate. The highly uniform MoS2 layers allow a successful integration of devices based on ∼1200 MoS2 transistor arrays with a yield of 95% because of their extreme homogeneity on Si wafers. Moreover, a pulse electrical measurement technique enabled investigation of the inherent physical properties of the atomically thin MoS2 layers by minimizing the charge-trapping effect. Such a facile synthesis method can be possibly applied to other 2D transition metal dichalcogenides to ultimately realize the chip integration of device architectures with all 2D-layered building blocks.

13.
ACS Appl Mater Interfaces ; 9(4): 3817-3823, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28058836

RESUMO

Here, we report that Nb doping of two-dimensional (2D) MoSe2 layered nanomaterials is a promising approach to improve their gas sensing performance. In this study, Nb atoms were incorporated into a 2D MoSe2 host matrix, and the Nb doping concentration could be precisely controlled by varying the number of Nb2O5 deposition cycles in the plasma enhanced atomic layer deposition process. At relatively low Nb dopant concentrations, MoSe2 showed enhanced device durability as well as NO2 gas response, attributed to its small grains and stabilized grain boundaries. Meanwhile, an increase in the Nb doping concentration deteriorated the NO2 gas response. This might be attributed to a considerable increase in the number of metallic NbSe2 regions, which do not respond to gas molecules. This novel method of doping 2D transition metal dichalcogenide-based nanomaterials with metal atoms is a promising approach to improve the performance such as stability and gas response of 2D gas sensors.

14.
Nanoscale ; 8(40): 17598-17607, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27714106

RESUMO

We demonstrate the charge transport characteristics of MoS2-based vertical heterojunction devices through the formation of interfacial strain. Atomically thin MoS2 bilayers were directly synthesized on a p-type Si substrate by using chemical vapor deposition to introduce an interfacial tensile strain in the vertical heterojunction diode structure, which was confirmed by Raman, X-ray and ultraviolet photoelectron spectroscopy techniques. The electrical and optoelectronic properties of the heterojunction devices with the as-grown MoS2 (A-MoS2) on p-Si were compared with those of transferred MoS2 (T-MoS2)/p-Si devices. To clearly understand the charge transport characteristics induced by the interfacial tensile strain, the Fowler-Nordheim (FN) analysis of the electrical properties of the diode devices was conducted with the corresponding energy band diagrams. All of the fabricated MoS2-based vertical diodes exhibited clearly rectifying behaviors, but the photoresponse properties of the A-MoS2-based and T-MoS2-based heterojunctions exhibited distinct differences. Interestingly, we found that the tunneling barrier heights of the A-MoS2-based heterojunction devices were relatively higher than those of the T-MoS2-based devices and were almost the same before and after illumination due to the interfacial tensile strain, whereas those of the T-MoS2-based devices were lowered after illumination. Our study will help further understand the charge transport properties of 2D material-based heterojunction devices in the presence of interfacial strain, ultimately enabling the design of electronic and optoelectronic devices with novel functionalities.

15.
Nanotechnology ; 27(41): 415603, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27608886

RESUMO

Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.


Assuntos
Clara de Ovo , Animais , Galinhas , Ouro , Hidrogéis , Nanopartículas Metálicas , Análise Espectral Raman
16.
Nanotechnology ; 27(43): 435501, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27658490

RESUMO

Scalable sub-micrometer molybdenum disulfide ([Formula: see text]) flake films with highly uniform coverage were created using a systematic approach. An electrohydrodynamic (EHD) printing process realized a remarkably uniform distribution of exfoliated [Formula: see text] flakes on desired substrates. In combination with a fast evaporating dispersion medium and an optimal choice of operating parameters, the EHD printing can produce a film rapidly on a substrate without excessive agglomeration or cluster formation, which can be problems in previously reported liquid-based continuous film methods. The printing of exfoliated [Formula: see text] flakes enabled the fabrication of a gas sensor with high performance and reproducibility for [Formula: see text] and [Formula: see text].

17.
Nano Lett ; 16(9): 5928-33, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27552187

RESUMO

The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications.

18.
Sci Rep ; 6: 31202, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510857

RESUMO

Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm(-2) (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm(-2) @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices.

19.
ACS Appl Mater Interfaces ; 8(33): 21612-7, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27490096

RESUMO

Molybdenum disulfide (MoS2) has increasingly attracted attention from researchers and is now one of the most intensively explored atomic-layered two-dimensional semiconductors. Control of the carrier concentration and doping type of MoS2 is crucial for its application in electronic and optoelectronic devices. Because the MoS2 layers are atomically thin, their transport characteristics may be very sensitive to ambient gas adsorption and the resulting charge transfer. We investigated the influence of the ambient gas (N2, H2/N2, and O2) choice on the resistance (R) and surface work function (WF) of trilayer MoS2 thin films grown via chemical vapor deposition. We also studied the electrical properties of gold (Au)-nanoparticle (NP)-coated MoS2 thin films; their R value was found to be 2 orders of magnitude smaller than that for bare samples. While the WF largely varied for each gas, R was almost invariant for both the bare and Au-NP-coated samples regardless of which gas was used. Temperature-dependent transport suggests that variable range hopping is the dominant mechanism for electrical conduction for bare and Au-NP-coated MoS2 thin films. The charges transferred from the gas adsorbates might be insufficient to induce measurable R change and/or be trapped in the defect states. The smaller WF and larger localization length of the Au-NP-coated sample, compared with the bare sample, suggest that more carriers and less defects enhanced conduction in MoS2.

20.
ACS Appl Mater Interfaces ; 8(30): 19635-42, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27388231

RESUMO

We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA