Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0083223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796128

RESUMO

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several B cell malignancies and Kaposi's sarcoma. We analyzed the function of K8.1, the major antigenic component of the KSHV virion in the infection of different cells. To do this, we deleted K8.1 from the viral genome. It was found that K8.1 is critical for the infection of certain epithelial cells, e.g., a skin model cell line but not for infection of many other cells. K8.1 was found to mediate attachment of the virus to cells where it plays a role in infection. In contrast, we did not find K8.1 or a related protein from a closely related monkey virus to activate fusion of the viral and cellular membranes, at least not under the conditions tested. These findings suggest that K8.1 functions in a highly cell-specific manner during KSHV entry, playing a crucial role in the attachment of KSHV to, e.g., skin epithelial cells.


Assuntos
Glicoproteínas , Herpesvirus Humano 8 , Queratinócitos , Proteínas Virais , Ligação Viral , Internalização do Vírus , Humanos , Glicoproteínas/deficiência , Glicoproteínas/genética , Glicoproteínas/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Sarcoma de Kaposi/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fusão de Membrana , Pele/citologia
2.
Viruses ; 15(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851478

RESUMO

Foamy viruses (FVs) are naturally found in many different animals and also in primates with the notable exception of humans, but zoonotic infections are common. In several species, two different envelope (env) gene sequence clades or genotypes exist. We constructed a simian FV (SFV) clone containing a reporter gene cassette. In this background, we compared the env genes of the SFVmmu-DPZ9524 (genotype 1) and of the SFVmmu_R289hybAGM (genotype 2) isolates. SFVmmu_R289hybAGM env-driven infection was largely resistant to neutralization by SFVmmu-DPZ9524-neutralizing sera. While SFVmmu_R289hybAGM env consistently effected higher infectivity and cell-cell fusion, we found no differences in the cell tropism conferred by either env across a range of different cells. Infection by both viruses was weakly and non-significantly enhanced by simultaneous knockout of interferon-induced transmembrane proteins (IFITMs) 1, 2, and 3 in A549 cells, irrespective of prior interferon stimulation. Infection was modestly reduced by recombinant overexpression of IFITM3, suggesting that the SFV entry step might be weakly restricted by IFITM3 under some conditions. Overall, our results suggest that the different env gene clades in macaque foamy viruses induce genotype-specific neutralizing antibodies without exhibiting overt differences in cell tropism, but individual env genes may differ significantly with regard to fitness.


Assuntos
Interferons , Spumavirus , Animais , Humanos , Fusão Celular , Genes env , Genótipo , Macaca , Proteínas de Membrana/genética , Proteínas de Ligação a RNA , Spumavirus/genética , Tropismo , Internalização do Vírus
3.
Viruses ; 14(3)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35336948

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is associated with a significant disease burden, in particular in Sub-Sahara Africa. A KSHV vaccine would be highly desirable, but the mechanisms underlying neutralizing antibody responses against KSHV remain largely unexplored. The complex made of glycoproteins H and L (gH/gL) activates gB for the fusion of viral and cellular membranes in all herpesviruses. KSHV gH/gL also interacts with cellular Eph family receptors. To identify optimal antigens for vaccination and to elucidate neutralization mechanisms, we primed mice with recombinantly expressed, soluble gH/gL (gHecto/gL) that was either wildtype (WT), lacking defined glycosylation sites or bearing modified glycosylation, followed by boosts with WT gHecto/gL. We also immunized with a gL-gHecto fusion protein or a gHecto-ferritin/gL nanoparticle. Immune sera neutralized KSHV and inhibited EphA2 receptor binding. None of the regimens was superior to immunization with WT gHecto/gL with regard to neutralizing activity and EphA2 blocking activity, the gL-gHecto fusion protein was equally effective, and the ferritin construct was inferior. gH/gL-targeting sera inhibited gB-mediated membrane fusion and inhibited infection also independently from receptor binding and gL, as demonstrated by neutralization of a novel KSHV mutant that does not or only marginally incorporate gL into the gH/gL complex and infects through an Eph-independent route.


Assuntos
Herpesvirus Humano 8 , Animais , Anticorpos Neutralizantes/metabolismo , Ferritinas , Herpesvirus Humano 8/metabolismo , Camundongos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
4.
mBio ; 12(6): e0211321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933450

RESUMO

The interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit the entry of enveloped viruses. We analyzed the effect of IFITMs on the gamma-2 herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus monkey rhadinovirus (RRV). We used CRISPR/Cas9-mediated gene knockout to generate A549 cells, human foreskin fibroblasts (HFF), and human umbilical vein endothelial cells (HUVEC) with combined IFITM1/2/3 knockout and identified IFITMs as cell-dependent inhibitors of KSHV and RRV infection in A549 cells and HFF but not HUVEC. IFITM overexpression revealed IFITM1 as the relevant IFITM that inhibits KSHV and RRV infection. Fluorescent KSHV particles did not pronouncedly colocalize with IFITM-positive compartments. However, we found that KSHV and RRV glycoprotein-mediated cell-cell fusion is enhanced upon IFITM1/2/3 knockout. Taken together, we identified IFITM1 as a cell-dependent restriction factor of KSHV and RRV that acts at the level of membrane fusion. Of note, our results indicate that recombinant IFITM overexpression may lead to results that are not representative for the situation at endogenous levels. Strikingly, we observed that the endotheliotropic KSHV circumvents IFITM-mediated restriction in HUVEC despite high IFITM expression, while influenza A virus (IAV) glycoprotein-driven entry into HUVEC is potently restricted by IFITMs even in the absence of interferon. Mechanistically, we found that KSHV colocalizes less with IFITM1 and IFITM2 in HUVEC than in A549 cells immediately after attachment, potentially contributing to the observed difference in restriction. IMPORTANCE IFITM proteins are the first line of defense against infection by many pathogens and may also have therapeutic importance, as they, among other effectors, mediate the antiviral effect of interferons. Neither their function against herpesviruses nor their mechanism of action is well understood. We report here that in some cells but not in, for example, primary umbilical vein endothelial cells, IFITM1 restricts KSHV and RRV and that, mechanistically, this is likely effected by reducing the fusogenicity of the cell membrane. Further, we demonstrate potent inhibition of IAV glycoprotein-driven infection of cells of extrapulmonary origin by high constitutive IFITM expression.


Assuntos
Antígenos de Diferenciação/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 8/fisiologia , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/imunologia , Rhadinovirus/fisiologia , Animais , Antígenos de Diferenciação/genética , Coinfecção/genética , Coinfecção/imunologia , Coinfecção/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Rhadinovirus/genética , Especificidade da Espécie , Internalização do Vírus , Replicação Viral
5.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33794143

RESUMO

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Farmacorresistência Viral , Humanos , Imunização Passiva , Cinética , Fusão de Membrana , Modelos Moleculares , Testes de Neutralização , Serina Endopeptidases/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Internalização do Vírus , Soroterapia para COVID-19
6.
PLoS Pathog ; 17(3): e1008979, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657166

RESUMO

The rhesus monkey rhadinovirus (RRV), a γ2-herpesvirus of rhesus macaques, shares many biological features with the human pathogenic Kaposi's sarcoma-associated herpesvirus (KSHV). Both viruses, as well as the more distantly related Epstein-Barr virus, engage cellular receptors from the Eph family of receptor tyrosine kinases (Ephs). However, the importance of the Eph interaction for RRV entry varies between cell types suggesting the existence of Eph-independent entry pathways. We therefore aimed to identify additional cellular receptors for RRV by affinity enrichment and mass spectrometry. We identified an additional receptor family, the Plexin domain containing proteins 1 and 2 (Plxdc1/2) that bind the RRV gH/gL glycoprotein complex. Preincubation of RRV with soluble Plxdc2 decoy receptor reduced infection by ~60%, while overexpression of Plxdc1 and 2 dramatically enhanced RRV susceptibility and cell-cell fusion of otherwise marginally permissive Raji cells. While the Plxdc2 interaction is conserved between two RRV strains, 26-95 and 17577, Plxdc1 specifically interacts with RRV 26-95 gH. The Plxdc interaction is mediated by a short motif at the N-terminus of RRV gH that is partially conserved between isolate 26-95 and isolate 17577, but absent in KSHV gH. Mutation of this motif abrogated the interaction with Plxdc1/2 and reduced RRV infection in a cell type-specific manner. Taken together, our findings characterize Plxdc1/2 as novel interaction partners and entry receptors for RRV and support the concept of the N-terminal domain of the gammaherpesviral gH/gL complex as a multifunctional receptor-binding domain. Further, Plxdc1/2 usage defines an important biological difference between KSHV and RRV.


Assuntos
Macaca mulatta/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Rhadinovirus/patogenicidade , Animais , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/genética , Humanos , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus
7.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33608407

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infects cells through interaction of its spike protein (SARS2-S) with angiotensin-converting enzyme 2 (ACE2) and activation by proteases, in particular transmembrane protease serine 2 (TMPRSS2). Viruses can also spread through fusion of infected with uninfected cells. We compared the requirements of ACE2 expression, proteolytic activation, and sensitivity to inhibitors for SARS2-S-mediated and SARS-CoV-S (SARS1-S)-mediated cell-cell fusion. SARS2-S-driven fusion was moderately increased by TMPRSS2 and strongly by ACE2, while SARS1-S-driven fusion was strongly increased by TMPRSS2 and less so by ACE2 expression. In contrast to that of SARS1-S, SARS2-S-mediated cell-cell fusion was efficiently activated by batimastat-sensitive metalloproteases. Mutation of the S1/S2 proteolytic cleavage site reduced effector cell-target cell fusion when ACE2 or TMPRSS2 was limiting and rendered SARS2-S-driven cell-cell fusion more dependent on TMPRSS2. When both ACE2 and TMPRSS2 were abundant, initial target cell-effector cell fusion was unaltered compared to that of wild-type (wt) SARS2-S, but syncytia remained smaller. Mutation of the S2 cleavage (S2') site specifically abrogated activation by TMPRSS2 for both cell-cell fusion and SARS2-S-driven pseudoparticle entry but still allowed for activation by metalloproteases for cell-cell fusion and by cathepsins for particle entry. Finally, we found that the TMPRSS2 inhibitor bromhexine, unlike the inhibitor camostat, was unable to reduce TMPRSS2-activated cell-cell fusion by SARS1-S and SARS2-S. Paradoxically, bromhexine enhanced cell-cell fusion in the presence of TMPRSS2, while its metabolite ambroxol exhibited inhibitory activity under some conditions. On Calu-3 lung cells, ambroxol weakly inhibited SARS2-S-driven lentiviral pseudoparticle entry, and both substances exhibited a dose-dependent trend toward weak inhibition of authentic SARS-CoV-2.IMPORTANCE Cell-cell fusion allows viruses to infect neighboring cells without the need to produce free virus and contributes to tissue damage by creating virus-infected syncytia. Our results demonstrate that the S2' cleavage site is essential for activation by TMPRSS2 and unravel important differences between SARS-CoV and SARS-CoV-2, among those, greater dependence of SARS-CoV-2 on ACE2 expression and activation by metalloproteases for cell-cell fusion. Bromhexine, reportedly an inhibitor of TMPRSS2, is currently being tested in clinical trials against coronavirus disease 2019. Our results indicate that bromhexine enhances fusion under some conditions. We therefore caution against the use of bromhexine in high dosages until its effects on SARS-CoV-2 spike activation are better understood. The related compound ambroxol, which similarly to bromhexine is clinically used as an expectorant, did not exhibit activating effects on cell-cell fusion. Both compounds exhibited weak inhibitory activity against SARS-CoV-2 infection at high concentrations, which might be clinically attainable for ambroxol.


Assuntos
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Ambroxol/farmacologia , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Bromoexina/farmacologia , COVID-19/genética , Linhagem Celular , Humanos , Mutação de Sentido Incorreto , Proteólise/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193241

RESUMO

We isolated a rhesus monkey rhadinovirus, isolate RRVmmu 209-07, from hemangioma tissue. The virion DNA was sequenced by Illumina-based sequencing. Isolate RRVmmu 209-07 is highly similar overall to RRV 26-95, but considerable differences exist in the 3' region of the genome.

9.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645449

RESUMO

A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01+ RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.


Assuntos
Deleção de Genes , Produtos do Gene gag , Vetores Genéticos , Infecções por Herpesviridae , Rhadinovirus , Vacinas contra a SAIDS , Vírus da Imunodeficiência Símia , Animais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Humanos , Macaca mulatta , Rhadinovirus/genética , Rhadinovirus/imunologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
Emerg Infect Dis ; 25(8): 1552-1555, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31310216

RESUMO

We identified a novel Kaposi's sarcoma herpesvirus-related rhadinovirus (Colobine gammaherpesvirus 1) in a mantled guereza (Colobus guereza kikuyensis). The animal had multiple oral tumors characterized by proliferation of latent nuclear antigen 1-positive spindle cells and was not co-infected with immunosuppressive simian viruses, suggesting that it had Kaposi sarcoma caused by this novel rhadinovirus.


Assuntos
Doenças dos Macacos/diagnóstico , Doenças dos Macacos/virologia , Rhadinovirus/classificação , Rhadinovirus/genética , Sarcoma de Kaposi/veterinária , Animais , Biópsia , Colobus , Feminino , Genes Virais , Genoma Viral , Imuno-Histoquímica , Filogenia , Rhadinovirus/isolamento & purificação
11.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118261

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and is associated with two B cell malignancies, primary effusion lymphoma (PEL) and the plasmablastic variant of multicentric Castleman's disease. On several adherent cell types, EphA2 functions as a cellular receptor for the gH/gL glycoprotein complex of KSHV. KSHV gH/gL also has previously been found to interact weakly with other members of the Eph family of receptor tyrosine kinases (Ephs), and other A-type Ephs have been shown to be able to compensate for the absence of EphA2 using overexpression systems. However, whether these interactions are of functional consequence at endogenous protein levels has remained unclear so far. Here, we demonstrate for the first time that endogenously expressed EphA7 in BJAB B cells is critical for the cell-to-cell transmission of KSHV from producer iSLK cells to BJAB target cells. The BJAB lymphoblastoid cell line often serves as a model for B cell infection and expresses only low levels of all Eph family receptors other than EphA7. Endogenous EphA7 could be precipitated from the cellular lysate of BJAB cells using recombinant gH/gL, and knockout of EphA7 significantly reduced transmission of KSHV into BJAB target cells. Knockout of EphA5, the second most expressed A-type Eph in BJAB cells, had a similar, although less pronounced, effect on KSHV infection. Receptor function of EphA7 was conserved for cell-free infection by the related rhesus monkey rhadinovirus (RRV), which is relatively even more dependent on EphA7 for infection of BJAB cells.IMPORTANCE Infection of B cells is relevant for two KSHV-associated malignancies, the plasmablastic variant of multicentric Castleman's disease and PEL. Therefore, elucidating the process of B cell infection is important for the understanding of KSHV pathogenesis. While the high-affinity receptor for the gH/gL glycoprotein complex, EphA2, has been shown to function as an entry receptor for various types of adherent cells, the gH/gL complex can also interact with other Eph receptor tyrosine kinases with lower avidity. We analyzed the Eph interactions required for infection of BJAB cells, a model for B cell infection by KSHV. We identified EphA7 as the principal Eph receptor for infection of BJAB cells by KSHV and the related rhesus monkey rhadinovirus. While two analyzed PEL cell lines exhibited high EphA2 and low EphA7 expression, a third PEL cell line, BCBL-1, showed high EphA7 and low EphA2 expression, indicating a possible relevance for KSHV pathology.


Assuntos
Linfócitos B/metabolismo , Receptor EphA7/metabolismo , Receptores Virais/metabolismo , Rhadinovirus/fisiologia , Internalização do Vírus , Animais , Linfócitos B/patologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Humanos , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Macaca mulatta , Receptor EphA7/genética , Receptores Virais/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
12.
Arch Virol ; 163(9): 2507-2512, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29860676

RESUMO

SFVmmu-DPZ9524 represents the third completely sequenced rhesus macaque simian foamy virus (SFV) isolate, alongside SFVmmu_K3T with a similar SFV-1-type env, and R289HybAGM with a SFV-2-like env. Sequence analysis demonstrates that, in gag and pol, SFVmmu-DPZ9524 is more closely related to R289HybAGM than to SFVmmu_K3T, which, outside of env, is more similar to a Japanese macaque isolate than to the other two rhesus macaque isolates SFVmmu-DPZ9524 and R289HybAGM. Further, we identify bel as another recombinant locus in R289HybAGM, confirming that recombination contributes to sequence diversity in SFV.


Assuntos
DNA Viral/genética , Macaca mulatta/virologia , Doenças dos Macacos/virologia , Recombinação Genética , Infecções por Retroviridae/veterinária , Vírus Espumoso dos Símios/genética , Animais , Expressão Gênica , Produtos do Gene env/genética , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Filogenia , Infecções por Retroviridae/virologia , Análise de Sequência de DNA , Sorogrupo , Vírus Espumoso dos Símios/classificação , Vírus Espumoso dos Símios/isolamento & purificação
13.
PLoS Pathog ; 14(2): e1006912, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432452

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus associated with Kaposi's sarcoma and two B-cell malignancies. The rhesus monkey rhadinovirus (RRV) is a virus of nonhuman primates that is closely related to KSHV. Eph family receptor tyrosine kinases (Ephs) are cellular receptors for the gH/gL glycoprotein complexes of both KSHV and RRV. Through sequence analysis and mutational screens, we identified conserved residues in the N-terminal domain of KSHV and RRV glycoprotein H that are critical for Eph-binding in vitro. Homology-based structural predictions of the KSHV and RRV gH/gL complexes based on the Epstein-Barr-Virus gH/gL crystal structure located these amino acids in a beta-hairpin on gH, which is likely stabilized by gL and is optimally positioned for protein-protein interactions. Guided by these predictions, we generated recombinant RRV and KSHV strains mutated in the conserved motif as well as an RRV gL null mutant. Inhibition experiments using these mutants confirmed that disruption of the identified Eph-interaction motif or of gL expression resulted in complete detargeting from Ephs. However, all mutants were infectious on all cell types tested, exhibiting normal attachment but a reduction in infectivity of up to one log order of magnitude. While Eph-binding-negative RRV mutants were replication-competent on fibroblasts, their infectivity was comparatively more reduced on endothelial cells with a substantial subpopulation of endothelial cells remaining resistant to infection. Together, this provides evidence for a cell type-specific use of Ephs by RRV. Furthermore, our results demonstrate that gL is dispensable for infection by RRV. Its deletion caused a reduction in infectivity similar to that observed after mutation of Eph-binding residues in gH. Our findings would be compatible with an ability of KSHV and RRV to use other, less efficient entry mediators in lieu of Ephs, although these host factors may not be uniformly expressed by all cells.


Assuntos
Herpesvirus Humano 8/metabolismo , Receptores da Família Eph/química , Receptores da Família Eph/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Células A549 , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Macaca mulatta , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Receptores da Família Eph/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética
14.
Viruses ; 9(10)2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065450

RESUMO

Gammaherpesviruses like Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS), an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML) protein-associated nuclear bodies (PML-NBs) by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.


Assuntos
Herpesvirus Humano 8/química , Interações Hospedeiro-Patógeno , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Replicação do DNA/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Ubiquitinação , Replicação Viral
15.
J Virol ; 90(17): 8013-28, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27356898

RESUMO

UNLABELLED: Nuclear domain 10 (ND10) components restrict herpesviral infection, and herpesviruses antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. The rhesus monkey rhadinovirus (RRV) shares many key biological features with the closely related Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) and readily infects cells of both human and rhesus monkey origin. We used the clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) technique to generate knockout (ko) cells for each of the four ND10 components, PML, SP100, DAXX, and ATRX. These ko cells were analyzed with regard to permissiveness for RRV infection. In addition, we analyzed the fate of the individual ND10 components in infected cells by immunofluorescence and Western blotting. Knockout of the ND10 component DAXX markedly increased RRV infection, while knockout of PML or SP100 had a less pronounced effect. In line with these observations, RRV infection resulted in rapid degradation of SP100, followed by degradation of PML and the loss of ND10 structures, whereas the protein levels of ATRX and DAXX remained constant. Notably, inhibition of the proteasome but not inhibition of de novo gene expression prevented the loss of SP100 and PML in cells that did not support lytic replication, compatible with proteasomal degradation of these ND10 components through the action of a viral tegument protein. Expression of the RRV FGARAT homolog ORF75 was sufficient to effect the loss of SP100 and PML in transfected or transduced cells, implicating ORF75 as the viral effector protein. IMPORTANCE: Our findings highlight the antiviral role of ND10 and its individual components and further establish the viral FGARAT homologs of the gammaherpesviruses to be important viral effectors that counteract ND10-instituted intrinsic immunity. Surprisingly, even closely related viruses like KSHV and RRV evolved to use different strategies to evade ND10-mediated restriction. RRV first targets SP100 for degradation and then targets PML with a delayed kinetic, a strategy which clearly differs from that of other gammaherpesviruses. Despite efficient degradation of these two major ND10 components, RRV is still restricted by DAXX, another abundant ND10 component, as evidenced by a marked increase in RRV infection and replication upon knockout of DAXX. Taken together, our findings substantiate PML, SP100, and DAXX as key antiviral proteins, in that the first two are targeted for degradation by RRV and the last one still potently restricts replication of RRV.


Assuntos
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Rhadinovirus/patogenicidade , Proteínas Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Linhagem Celular , Proteínas Correpressoras , DNA Helicases/metabolismo , Humanos , Microscopia de Fluorescência , Chaperonas Moleculares , Proteólise , Proteína Nuclear Ligada ao X
17.
J Virol ; 88(16): 8724-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899181

RESUMO

UNLABELLED: The ephrin receptor tyrosine kinase A2 (EphA2) is an entry receptor for Kaposi's sarcoma-associated herpesvirus (KSHV) that is engaged by the virus through its gH/gL glycoprotein complex. We describe here that natural ephrin ligands inhibit the gH/gL-EphA2 interaction. The effects of point mutations within EphA2 demonstrated that KSHV gH/gL interacts with EphA2 through a restricted set of the same residues that mediate binding of A-type ephrins. Two previously described inhibitors of the EphA2 interaction with ephrin A5 also inhibited binding of KSHV gH/gL to EphA2. The more potent of the two compounds inhibited KSHV infection of blood vessel and lymphatic endothelial cells in the micromolar concentration range. Our results demonstrate that interaction of KSHV with EphA2 occurs in a fashion similar to that of the natural ephrin ligands. Our data further indicate a new avenue for drug development against KSHV. IMPORTANCE: Our study reports two important findings. First, we show that KSHV engages its receptor, the receptor tyrosine kinase EphA2, at a site that overlaps the binding site of the natural ephrin ligands. Second, we demonstrate that KSHV infection of target cells can be blocked by a small-molecule inhibitor of the viral glycoprotein-EphA2 interaction. These findings represent a novel avenue for the development of strategies to treat KSHV-associated diseases.


Assuntos
Efrinas/metabolismo , Herpesvirus Humano 8/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptor EphA2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/virologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células HEK293 , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Ligantes , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
18.
PLoS Pathog ; 9(5): e1003360, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696734

RESUMO

Cellular Ephrin receptor tyrosine kinases (Ephrin receptors, Ephs) were found to interact efficiently with the gH/gL glycoprotein complex of the rhesus monkey rhadinovirus (RRV). Since EphA2 was recently identified as a receptor for the Kaposi's sarcoma-associated herpesvirus (KSHV) (Hahn et al., Nature Medicine 2012), we analyzed RRV and KSHV in parallel with respect to Eph-binding and Eph-dependent entry. Ten of the 14 Eph proteins, including both A- and B-type, interacted with RRV gH/gL. Two RRV strains with markedly different gH/gL sequences exhibited similar but slightly different binding patterns to Ephs. gH/gL of KSHV displayed high affinity towards EphA2 but substantially weaker binding to only a few other Ephs of the A-type. Productive entry of RRV 26-95 into B cells and into endothelial cells was essentially completely dependent upon Ephs since expression of a GFP reporter cassette from recombinant virus could be blocked to greater than 95% by soluble Eph decoys using these cells. In contrast, entry of RRV into fibroblasts and epithelial cells was independent of Ephs by these same criteria. Even high concentrations and mixtures of soluble Eph decoys were not able to reduce by any appreciable extent the number of fibroblasts and epithelial cells productively entered by RRV. Thus, RRV is similar to its close relative KSHV in the use of Eph family receptors for productive entry into B cells and endothelial cells. However, RRV uses a separate, distinct, Eph-independent pathway for productive entry into fibroblasts and epithelial cells. Whether KSHV also uses an Eph-independent pathway in some circumstances or to some extent remains to be determined.


Assuntos
Linfócitos B/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Receptor EphA2/metabolismo , Rhadinovirus/metabolismo , Tropismo Viral/fisiologia , Internalização do Vírus , Animais , Linfócitos B/patologia , Linfócitos B/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Fibroblastos/patologia , Células HeLa , Humanos , Macaca mulatta , Receptor EphA2/genética , Rhadinovirus/genética
19.
Nat Med ; 18(6): 961-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22635007

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma(1), a highly vascularized tumor originating from lymphatic endothelial cells, and of at least two different B cell malignancies(2,3). A dimeric complex formed by the envelope glycoproteins H and L (gH-gL) is required for entry of herpesviruses into host cells(4). We show that the ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH-gL. EphA2 co-precipitated with both gH-gL and KSHV virions. Infection of human epithelial cells with a GFP-expressing recombinant KSHV strain, as measured by FACS analysis, was increased upon overexpression of EphA2. Antibodies against EphA(2) and siRNAs directed against EphA2 inhibited infection of endothelial cells. Pretreatment of KSHV with soluble EphA2 resulted in inhibition of KSHV infection by up to 90%. This marked reduction of KSHV infection was seen with all the different epithelial and endothelial cells used in this study. Similarly, pretreating epithelial or endothelial cells with the soluble EphA2 ligand ephrinA4 impaired KSHV infection. Deletion of the gene encoding EphA2 essentially abolished KSHV infection of mouse endothelial cells. Binding of gH-gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry(5,6). Quantitative RT-PCR and in situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from human Kaposi's sarcoma lesions or unaffected human lymphatic endothelium, and in situ in Kaposi's sarcoma specimens, respectively. Taken together, our results identify EphA2, a tyrosine kinase with known functions in neovascularization and oncogenesis, as an entry receptor for KSHV.


Assuntos
Herpesvirus Humano 8/fisiologia , Receptor EphA2/fisiologia , Receptores Virais/fisiologia , Animais , Linhagem Celular , Endocitose , Humanos , Camundongos , Fosforilação , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia
20.
J Biol Chem ; 284(13): 8525-38, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19129183

RESUMO

Kaposi's sarcoma-associated herpesvirus encodes four genes with homology to the family of interferon regulatory factors (IRFs). At least one of these viral IRFs, vIRF-3, is expressed in latently Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma (PEL) cells and is essential for the survival of PEL cells. We now report that vIRF-3 interacts with cellular IRF-5, thereby inhibiting binding of IRF-5 to interferon-responsive promoter elements. Consequently, vIRF-3 blocked IRF-5-mediated promoter activation. A central double helix motif present in vIRF-3 was sufficient to abrogate both DNA binding and transcriptional transactivation by IRF-5. Upon DNA damage or activation of the interferon or Toll-like receptor pathways, cytoplasmic IRF-5 has been reported to be translocated to the nucleus, which results in induction of both p53-independent apoptosis and p21-mediated cell cycle arrest. We report here that IRF-5 is present in the nuclei of PEL cells without interferon stimulation. Silencing of vIRF-3 expression in PEL cells was accompanied by increased sensitivity to interferon-mediated apoptosis and up-regulation of IRF-5 target genes. In addition, vIRF-3 antagonized IRF-5-mediated activation of the p21 promoter. The data presented here indicate that vIRF-3 contributes to immune evasion and sustained proliferation of PEL cells by releasing IRF-5 from transcription complexes.


Assuntos
Núcleo Celular/metabolismo , Herpesvirus Humano 8/metabolismo , Fatores Reguladores de Interferon/metabolismo , Elementos de Resposta , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Apoptose/genética , Apoptose/imunologia , Núcleo Celular/genética , Núcleo Celular/imunologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/imunologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inativação Gênica , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/imunologia , Linfoma de Efusão Primária/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptores de Interferon/metabolismo , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Regulação para Cima/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA