Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340399

RESUMO

Maca (Lepidium meyenii) is a plant that grows in the central Andes region of Peru, and it has been reported to have various bioactive functions, such as improving or preventing osteoporosis, sexual dysfunction, and memory impairment. In this study, maca roots of various colors (yellow, red, or black) were extracted using different polar solvents (PE, HEX, or BuOH) to compare their effects on muscle differentiation. Among them, the red maca lipophilic extract, which showed the most effectiveness, was chosen for further investigation. Our results show that RMLE enhances muscle differentiation by inducing MyoD-E2A heterodimerization through the activation of the AKT/p38 pathway. Additionally, RMLE attenuated dexamethasone-induced muscle atrophy by inhibiting nuclear translocation of FoxO3a and expression of E3-ligase (MAFbx and MURF1) in vitro and in vivo. Therefore, based on these results suggest that lipophilic extract of maca, which can abundantly contain nonpolar compounds, macamides, can enhance the functional properties of maca in alleviating muscle homeostasis.


Assuntos
Lepidium , Proteínas Proto-Oncogênicas c-akt , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Dexametasona/farmacologia , Extratos Vegetais/farmacologia
2.
J Microbiol Biotechnol ; 34(2): 296-305, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073404

RESUMO

Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.


Assuntos
Antifúngicos , Bacillus , Antifúngicos/farmacologia , Antifúngicos/química , Bacillus/genética , Bactérias/metabolismo , Lipopeptídeos/metabolismo
3.
J Microbiol Biotechnol ; 33(5): 662-667, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37248205

RESUMO

Allantoin is an abundant component of yams and has been known as a skin protectant due to its pharmacological activities. In previous methods for allantoin determination using high-performance liquid chromatography (HPLC), the separation was unsatisfactory. We herein developed a 1H quantitative nuclear magnetic resonance (qNMR) method for quantification of allantoin in the flesh and peel of yams. The method was carried out based on the relative ratio of signals integration of allantoin to a certain amount of the internal standard dimethyl sulfone (DMSO2) and validated in terms of specificity, linearity (range 62.5-2000 µg/ml), sensitivity (limit of detection (LOD) and quantification (LOQ) 4.63 and 14.03 µg/ml, respectively), precision (RSD% 0.02-0.26), and recovery (86.35-92.11%). The method was then applied for the evaluation of allantoin in flesh and peel extracts of four different yams cultivated in Korea.


Assuntos
Dioscorea , Dioscorea/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Alantoína/análise , Alantoína/farmacologia , Espectroscopia de Ressonância Magnética , Limite de Detecção , Cromatografia Líquida de Alta Pressão/métodos
4.
Nutrients ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364945

RESUMO

Akebia quinata, commonly called chocolate vine, has various bioactivities, including antioxidant and anti-obesity properties. However, the anti-obesity effects of bioconverted extracts of A. quinate have not been examined. In this study, A. quinata fruit extracts was bioconverted using the enzyme isolated from the soybean paste fungi Aspergillus kawachii. To determine whether the bioconversion process could influence the anti-obesity effects of A. quinata fruit extracts, we employed 3T3-L1 adipocytes and HFD-induced obese rats. We observed that the bioconverted fruit extract of A. quinata (BFE) afforded anti-obesity effects, which were stronger than that for the non-bioconverted fruit extract (FE) of A. quinata. In 3T3-L1 adipocytes, treatment with BFE at concentrations of 20 and 40 µg reduced intracellular lipids by 74.8 (p < 0.05) and 54.9% (p < 0.01), respectively, without inducing cytotoxicity in preadipocytes. Moreover, the oral administration of BFE at the concentration of 300 mg/kg/day significantly reduced body and adipose tissue weights (p < 0.01) in HFD-induced obese rats. Plasma cholesterol values were reduced, whereas HDL was increased in BFE receiving rats. Although FE could exert anti-obesity effects, BFE supplementation induced more robust effects than FE. These results could be attributed to the bioconversion-induced alteration of bioactive compound content within the extract.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Fármacos Antiobesidade/farmacologia , Adipogenia , Frutas , Células 3T3-L1 , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL
5.
Biology (Basel) ; 11(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36101393

RESUMO

Nidus vespae, commonly known as the wasp nest, has antioxidative, anti-inflammatory, antimicrobial, and antitumor properties. However, the anti-obesity effects of Nidus vespae extract (NV) have not yet been reported. This study aimed to elucidate the potential anti-obesity effects of NV in vivo and in vitro, using a high-fat diet (HFD)-induced obese mouse model and 3T3-L1 adipocytes, respectively. NV administration to HFD-induced obese mice significantly decreased the mass and plasma lipid content of adipose tissues. Uncoupling protein-1 expression was significantly higher in the inguinal white adipose tissues of NV-treated mice than in those of HFD-fed mice. Furthermore, we found that NV inhibited the differentiation and intracellular lipid accumulation of 3T3-L1 adipocytes by regulating the insulin signaling cascade, including protein kinase B, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, and adiponectin. These findings suggest that NV may exhibit therapeutic effects against obesity by suppressing adipose tissue expansion and preadipocyte differentiation, thereby providing critical information for the development of new drugs for disease prevention and treatment. To our knowledge, this study provides the first evidence of the anti-obesity effects of NV.

6.
J Microbiol Biotechnol ; 32(8): 976-981, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879304

RESUMO

Phenanthrenes are bioactive phenolic compounds found in genus Dioscorea, in which they are distributed more in peel than in flesh. Recent studies on phenanthrenes from Dioscorea sp. peels have revealed the potential for valuable biomaterials. Herein, an analytical method using high-performance liquid chromatography (HPLC) for quantitation of bioactive phenanthrenes was developed and validated. The calibration curves were obtained using the phenanthrenes (1-3) previously isolated from Dioscorea batatas concentrations in the range of 0.625-20.00 µg/ml with a satisfactory coefficient of determination (R2) of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) values of the isolated phenanthrenes ranged from 0.78-0.89 and 2.38-2.71 µg/ml, respectively. The intraday and interday precision ranged from 0.25-7.58%. The recoveries of the isolated phenanthrenes were from 95 to 100% at concentrations of 1.25, 2.5, and 5.0 µg/ml. Additionally, phenanthrenes (1-3) were found in all investigated peel extracts. Hence, the developed method was encouraging for the quantitative analysis of phenanthrenes in genus Dioscorea.


Assuntos
Dioscorea , Fenantrenos , Cromatografia Líquida de Alta Pressão , Fenóis , Extratos Vegetais
7.
Sci Rep ; 12(1): 10285, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717509

RESUMO

We report a method for the simultaneous determination of the sequence and absolute configuration of peptide amino acids using a combination of Edman degradation and HPLC-MS/CD. Phenylthiohydantoin (PTH) derivatives of 20 pairs of standard D- and L-amino acids were synthesized by the Edman reaction. The CD spectra of the derivatives revealed that each pair of the PTH derivatives exhibited the absorption with opposite signs at around 270 nm. These standard PTH derivatives showed well-resolved resolution without interference from byproducts in the ion chromatogram and clear positive/negative CD absorptions when subjected on a reversed phase HPLC-MS system coupled with a CD-2095 HPLC detector. This method was applied for the detection of a synthetic pentapeptide and a natural depsipeptide (halicylindramide C). The sequence and configuration of the pentapeptide and up to eight residues of halicylindramide C were successfully analyzed by this method. The amino acid configuration of the pentapeptide was also determined successfully by subjecting its acid hydrolysates to the Edman reaction followed by HPLC-MS/CD.


Assuntos
Aminoácidos , Feniltioidantoína , Aminas , Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Peptídeos/química , Feniltioidantoína/química
8.
J Ethnopharmacol ; 282: 114633, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520827

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Dioscorea batatas Decne (called Chinses yam) widely distributed in East Asian countries including China, Japan, Korea and Taiwan has long been used in oriental folk medicine owing to its tonic, antitussive, expectorant and anti-ulcerative effects. It has been reported to have anti-inflammatory, antioxidative, cholesterol-lowering, anticholinesterase, growth hormone-releasing, antifungal and immune cell-stimulating activities. AIM OF THE STUDY: Neuroinflammation caused by activated microglia contributes to neuronal dysfunction and neurodegeneration. In the present study, the anti-neuroinflammatory activity of 6,7-dihydroxy-2,4-dimethoxy phenanthrene (DHDMP), a phenanthrene compound isolated from Dioscorea batatas Decne, was examined in microglial and neuronal cells. MATERIALS AND METHODS: A natural phenanthrene compound, DHDMP, was isolated from the peel of Dioscorea batatas Decne. The anti-neuroinflammatory capability of the compound was examined using the co-culture system of BV2 murine microglial and HT22 murine neuronal cell lines. The expression levels of inflammatory mediators and cytoprotective proteins in the cells were quantified by enzyme-linked immunosorbent assay and Western blot analysis. RESULTS: DHDMP at the concentrations of ≤1 µg/mL did not exhibit a cytotoxic effect for BV2 and HT22 cells. Rather DHDMP effectively restored the growth rate of HT22 cells, which was reduced by co-culture with lipopolysaccharide (LPS)-treated BV2 cells. DHDMP significantly decreased the production of proinflammatory mediators, such as nitric oxide, tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in BV2 cells. Moreover, DHDMP strongly inhibited the nuclear translocation of nuclear factor κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV2 cells. The compound did not affect the levels and phosphorylation of ERK and JNK. Concurrently, DHDMP increased the expression of heme oxygenase-1 (HO-1), an inducible cytoprotective enzyme, in HT22 cells. CONCLUSIONS: Our findings indicate that DHDMP effectively dampened LPS-mediated inflammatory responses in BV2 microglial cells by suppressing transcriptional activity of NF-κB and its downstream mediators and contributed to HT22 neuronal cell survival. This study provides insight into the therapeutic potential of DHDMP for inflammation-related neurological diseases.


Assuntos
Dioscorea/química , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Fenantrenos/farmacologia , Animais , Humanos , Microglia/metabolismo , NF-kappa B , Fenantrenos/química , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno
9.
Mar Drugs ; 19(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34564183

RESUMO

Five new bicyclic carboxylic acids were obtained by antibacterial activity-guided isolation from a Korean colonial tunicate Didemnum sp. Their structures were elucidated by the interpretation of NMR, MS and CD spectroscopic data. They all belong to the class of aplidic acids. Three of them were amide derivatives (1-3), and the other two were dicarboxylic derivatives (4 and 5). The absolute configurations were determined by a bisignate pattern of CD spectroscopy, which revealed that the absolute configurations of amides were opposite to those of dicarboxylates at every stereogenic centers. Compound 2 exhibited the most potent antibacterial activity (MIC, 2 µg/mL).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Urocordados/química , Animais , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos
10.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439500

RESUMO

Resveratrol (RES) and oxyresveratrol (OXYRES) are considered and utilized as active ingredients of anti-aging skin cosmetics. However, these compounds are susceptible to oxidative discoloration and unpleasant odor in solutions, limiting their use in cosmetics. Accordingly, RES and OXYRES were chemically modified to acetylated derivatives with enhanced stability, and their anti-aging effect on the skin and detailed molecular mechanism of their acetylated derivatives were investigated. Acetylated RES and OXYRES lost their acetyl group and exerted an inhibitory effect on H2O2-induced ROS levels in human dermal fibroblast (HDF) cells. In addition, RES, OXYRES, and their acetylated derivatives suppressed UVB-induced matrix metalloproteinase (MMP)-1 expression via inhibition of mitogen-activated protein kinases (MAPKs) and Akt/mTOR signaling pathways. Furthermore, RES, OXYRES, and their acetylated derivatives suppressed type I collagen in TPA-treated HDF cells. Collectively, these results suggest the beneficial effects and underlying molecular mechanisms of RES, OXYRES, and their acetylated derivatives for anti- skin aging applications.

11.
Mar Drugs ; 19(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356813

RESUMO

Currently, periodontitis treatment relies on surgical operations, anti-inflammatory agents, or antibiotics. However, these treatments cause pain and side effects, resulting in a poor prognosis. Therefore, in this study, we evaluated the impact of the compound epiloliolide isolated from Sargassum horneri on the recovery of inflammatory inhibitors and loss of periodontal ligaments, which are essential treatment strategies for periodontitis. Here, human periodontal ligament cells stimulated with PG-LPS were treated with the compound epiloliolide, isolated from S. horneri. In the results of this study, epiloliolide proved the anti-inflammatory effect, cell proliferation capacity, and differentiation potential of periodontal ligament cells into osteoblasts, through the regulation of the PKA/CREB signaling pathway. Epiloliolide effectively increased the proliferation and migration of human periodontal ligament cells without cytotoxicity and suppressed the protein expression of proinflammatory mediators and cytokines, such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß, by downregulating NLRP3 activated by PG-LPS. Epiloliolide also upregulated the phosphorylation of PKA/CREB proteins, which play an important role in cell growth and proliferation. It was confirmed that the anti-inflammatory effect in PG-LPS-stimulated large cells was due to the regulation of PKA/CREB signaling. We suggest that epiloliolide could serve as a potential novel therapeutic agent for periodontitis by inhibiting inflammation and restoring the loss of periodontal tissue.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Ligamento Periodontal/citologia , Sargassum , Animais , Organismos Aquáticos , Produtos Biológicos , Linhagem Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
12.
Bioorg Chem ; 113: 105027, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098398

RESUMO

Psiguadial B (8), and its fluoro- (8a), chloro- (8b), and bromo- (8c) derivatives were synthesized using a sodium acetate-catalyzed single step coupling of three components: ß-caryophyllene (5), diformylphloroglucinol (11), and benzaldehyde (12). These compounds efficiently and dose-dependently decreased H2O2-induced cell death, a quantitative marker of cell death, in primary cultures of mouse cortical neurons. Psiguadial B also decreased neuronal death and accumulation of ROS induced by FeCl2 in cortical cultures. The in vitro effects of these compounds in lipopolysaccharide (LPS)-induced expression of nitric oxide (NO), and TNF-α and IL-6 by suppressing the NF-κB pathway in immune cells demonstrated their antioxidative and anti-inflammatory activity. The present findings warrant further research on the development of psiguadial B-based neuroprotective agents for the treatment of neurodegenerative diseases, acute brain injuries and immunological disorders.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Fármacos Neuroprotetores/química , Terpenos/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Compostos Ferrosos/farmacologia , Halogenação , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Psidium/química , Psidium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260980

RESUMO

Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.

14.
Medicina (Kaunas) ; 56(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255313

RESUMO

Background and objectives: Sargassum miyabei Yendo, belonging to the family Sargassaceae, has been reported to have various biological effects such as anti-tyrosinase activity and anti-inflammation. However, the anti-obesity effect of Sargassum miyabei Yendo has not yet been reported. Materials and Methods: The effects of Sargassum miyabei Yendo extract (SME) on 3T3-L1 adipocytes were screened by3-(4,5)-dimethylthiazo-2-yl-2,5-diphenyltetrazolium bromide (MTT), Oil red O staining, western blot, and Real-time reverse transcription polymerase chain reaction analyses. Results: Here, we show that SME had potent 2,2'-azinobis-3-ehtlbezothiazoline-6-sulfonic acid radical decolorization (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity with half maximal inhibitory concentration (IC50) value of 0.2868 ± 0.011 mg/mL and 0.2941 ± 0.014 mg/mL, respectively. In addition, SME significantly suppressed lipid accumulation and differentiation of 3T3-L1 preadipocytes, as shown by Oil Red O staining results. SME attenuated the expression of adipogenic- and lipogenic-related genes such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), CCAAT-enhancer-binding protein delta (C/EBPδ), adiponectin, adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), hormone-sensitive lipase (HSL), and lipoprotein lipase (LPL). Conclusions: These findings suggest that SME may have therapeutic implications for developing a new anti-obesity agent.


Assuntos
Adipócitos/efeitos dos fármacos , PPAR gama , Phaeophyceae , Sargassum , Células 3T3-L1 , Animais , Antioxidantes , Diferenciação Celular , Camundongos , PPAR gama/genética
15.
Fitoterapia ; 146: 104724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32946945

RESUMO

Particulate matter with an aerodynamic diameter equal to or less than 2.5 µm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Cardamonin, a flavone found in Alpinia katsumadai Heyata seeds, has been reported to have anti-inflammatory and anticoagulative activity. The aim of this study was to determine the protective effects of cardamonin on PM2.5-induced lung injury. Mice were treated with cardamonin via tail-vein injection 30 min after the intratracheal instillation of PM2.5. The results showed that cardamonin markedly reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM2.5. Cardamonin also significantly inhibited PM2.5-induced myeloperoxidase (MPO) activity in lung tissue, decreased the levels of PM2.5-induced inflammatory cytokines and effectively attenuated PM2.5-induced increases in the number of lymphocytes in the bronchoalveolar lavage fluid (BALF). And, cardamonin increased the phosphorylation of mammalian target of rapamycin (mTOR) and dramatically suppressed the PM2.5-stimulated expression of toll-like receptor 2 and 4 (TLR 2,4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that cardamonin has a critical anti-inflammatory effect due to its ability to regulate both the TLR2,4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against PM2.5-induced lung injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Autofagia , Chalconas/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Material Particulado/efeitos adversos , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Foods ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640612

RESUMO

The systematic investigations on the value of social wasps as a food resource are deficient, in spite of the long history of the utilization of social wasps as food and pharmaceutical bioresources. Vespa velutina nigrithorax is an invasive alien wasp species that is currently dominating in East Asia and Europe, bringing huge economic damages. As a control over alien species is made when the valuable utilization of the invasive species as a potential resource are discovered, investigations on the potential of V. v. nigrithorax as a useful bioresource are also in demand. Nutritional and heavy metal analyses of the larvae revealed their balanced and rich nutritional value and safety as a food resource. The larval saliva amino acid composition was investigated for further study on amino acid supplementation and exercise enhancement.

17.
Genes (Basel) ; 11(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963266

RESUMO

The velvet regulator VosA plays a pivotal role in asexual sporulation in the model filamentous fungus Aspergillus nidulans. In the present study, we characterize the roles of VosA in sexual spores (ascospores) in A. nidulans. During ascospore maturation, the deletion of vosA causes a rapid decrease in spore viability. The absence of vosA also results in a lack of trehalose biogenesis and decreased tolerance of ascospores to thermal and oxidative stresses. RNA-seq-based genome-wide expression analysis demonstrated that the loss of vosA leads to elevated expression of sterigmatocystin (ST) biosynthetic genes and a slight increase in ST production in ascospores. Moreover, the deletion of vosA causes upregulation of additional gene clusters associated with the biosynthesis of other secondary metabolites, including asperthecin, microperfuranone, and monodictyphenone. On the other hand, the lack of vosA results in the downregulation of various genes involved in primary metabolism. In addition, vosA deletion alters mRNA levels of genes associated with the cell wall integrity and trehalose biosynthesis. Overall, these results demonstrate that the velvet regulator VosA plays a key role in the maturation and the cellular and metabolic integrity of sexual spores in A. nidulans.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/metabolismo , Metabolismo Secundário/fisiologia , Esporos Fúngicos/metabolismo , Reprodução Assexuada/fisiologia , Esporos Fúngicos/genética , Esterigmatocistina/biossíntese
18.
Antioxidants (Basel) ; 8(11)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717654

RESUMO

Dioscorea batatas Decne (Chinese yam) has been widely cultivated in East Asia for the purposes of food and medicinal uses for centuries. Along with its high nutritional value, the medicinal value of D. batatas has been extensively investigated in association with phytochemicals such as allantoin, flavonoids, saponins and phenanthrenes. Phenanthrenes are especially considered the standard marker chemicals of the Chinese yam for their potent bioactivity and availability of analysis with conventional high performance liquid chromatography with ultraviolet detection (HPLC-UV) methods. In order to investigate how much the contents of phenanthrenes are in the actual food products provided for consumers, D. batatas tuber was peeled and separated into its peel and flesh as in the conventional processing method. A quantitative analysis using the HPLC-UV method revealed that phenanthrenes are concentrically present in the D. batatas peel, while phenanthrenes are present in the flesh under the limit of detection. The difference in the contents of phenanthrenes is estimated to have arisen the considerable difference of antioxidant potential between the peel and the flesh. The results from this study suggest the high value of the discarded biomass of the Chinese yam peel and the necessity for the utilization of the Chinese yam peel.

19.
J Toxicol Environ Health A ; 82(12): 727-740, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342870

RESUMO

Particulate matter 2.5 (PM2.5), with an aerodynamic diameter of ≤2.5 µm, is the primary air pollutant that plays a key role associated with lung injury produced by loss of vascular barrier integrity. Dioscorea batatas Decne (Chinese yam), a perennial plant belonging to Dioscoreaceae family, is widely cultivated in tropical and subtropical regions across Asia. Both aerial parts and root of D. batatas are consumed for nutritional and medicinal purposes. The aim of this study was to (1) identify the bioactive compounds present in D. batatas peel which may be responsible for inhibition of PM2.5-induced pulmonary inflammation in mice and (2) examine in vitro mechanisms underlying the observed effects of these compounds on mouse lung microvascular endothelial cells. The measured parameters include permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology. Two phenanthrene compounds, 2,7-dihydroxy-4,6-dimethoxyphenanthrene (1) and 6,7-dihydroxy-2,4-dimethoxyphenanthrene (2) were isolated from D. batatas peels. Both these phenanthrene compounds exhibited significant scavenging activity against PM2.5-induced ROS and inhibited ROS-induced activation of p38 mitogen-activated protein kinase. In addition, enhancement of Akt pathway, involved in the maintenance of endothelial integrity, was noted. These phenanthrene compounds also reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid obtained from PM2.5-induced lung tissues. Evidence thus indicates that phenanthrene compounds derived from D. batatas may exhibit protective effects against PM2.5-induced inflammatory lung injury and vascular hyperpermeability in mice.


Assuntos
Dioscorea/química , Lesão Pulmonar/induzido quimicamente , Material Particulado/toxicidade , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Lesão Pulmonar/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Tamanho da Partícula , Fenantrenos/química , Fenantrenos/uso terapêutico , Fosforilação , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
J Med Food ; 22(2): 109-120, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30592687

RESUMO

Cardiovascular disease (CVD)-associated thrombosis are the most threatening cause of death worldwide. To resolve this crisis, efforts must be made to discover antithrombotic compounds for development of therapeutic agents with novel mechanisms of action, higher efficacy, and less adverse effects. It might also impact on the development of nutraceuticals to ameliorate vascular disease, and the development of appropriate diets to prevent CVDs. Recently, the research on antithrombotic compounds from edible natural sources increased swiftly by demand, and there has been remarkable progress. This review article covers bioactive components with antithrombotic activity that have been investigated in recent 5 years, more focused on the chemical structure classification (phenolics, polysaccharides, peptides, terpenes, and so on) and their original natural sources (traditional medicines, plants, animals, and foods).


Assuntos
Produtos Biológicos/farmacologia , Fibrinolíticos , Trombose , Animais , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Dieta , Suplementos Nutricionais , Humanos , Peptídeos/farmacologia , Fenóis/farmacologia , Polissacarídeos/farmacologia , Terpenos/farmacologia , Trombose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA