Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(3): 527-538, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32758447

RESUMO

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.


Assuntos
Inflamação/genética , Interleucinas/genética , Peroxidase/genética , Psoríase/genética , Dermatopatias/genética , Adulto , Animais , Citocinas/genética , Armadilhas Extracelulares/genética , Feminino , Humanos , Inflamação/patologia , Interleucina-1/genética , Interleucinas/metabolismo , Masculino , Camundongos , Mutação/genética , Neutrófilos/metabolismo , Psoríase/patologia , Doenças Raras/enzimologia , Doenças Raras/genética , Doenças Raras/patologia , Pele/enzimologia , Pele/patologia , Dermatopatias/patologia
2.
Sci Transl Med ; 12(530)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051226

RESUMO

Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of ß-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Animais , Diferenciação Celular , Janus Quinases , Camundongos , Osteoblastos , Osteoclastos
3.
Nat Commun ; 11(1): 120, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913287

RESUMO

Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease.


Assuntos
Imunoglobulina A/imunologia , Polissacarídeos/metabolismo , Adulto , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Autoanticorpos/química , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Feminino , Glicosilação , Humanos , Imunoglobulina A/química , Imunoglobulina A/metabolismo , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia
5.
Redox Biol ; 26: 101279, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349119

RESUMO

The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C-/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.


Assuntos
NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Animais , Autoanticorpos/imunologia , Citocinas/metabolismo , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2/genética , Necrose/genética , Necrose/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagocitose/genética , Fagocitose/imunologia , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/metabolismo
6.
Dis Model Mech ; 11(9)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30045841

RESUMO

Enthesitis is a key feature of several different rheumatic diseases. Its pathophysiology is only partially known due to the lack of access to human tissue and the shortage of reliable animal models for enthesitis. Here, we aimed to develop a model that mimics the effector phase of enthesitis and reliably leads to inflammation and new bone formation. Enthesitis was induced by local injection of monosodium urate (MSU) crystals into the metatarsal entheses of wild-type (WT) or oxidative-burst-deficient (Ncf1**) mice. Quantitative variables of inflammation (edema, swelling) and vascularization (tissue perfusion) were assessed by magnetic resonance imaging (MRI), bone-forming activity by [18F]-fluoride positron emission tomography (PET), and destruction of cortical bone and new bone formation by computed tomography (CT). Non-invasive imaging was validated by histochemical and histomorphometric analysis. While injection of MSU crystals into WT mice triggered transient mild enthesitis with no new bone formation, Ncf1** mice developed chronic enthesitis accompanied by massive enthesiophytes. In MRI, inflammation and blood flow in the entheses were chronically increased, while PET/CT showed osteoproliferation with enthesiophyte formation. Histochemical analyses showed chronic inflammation, increased vascularization, osteoclast differentiation and bone deposition in the affected entheseal sites. Herein we describe a fast and reliable effector model of chronic enthesitis, which is characterized by a combination of inflammation, vascularization and new bone formation. This model will help to disentangle the molecular pathways involved in the effector phase of enthesitis.


Assuntos
Imagem Multimodal , Osteogênese , Doenças Reumáticas/diagnóstico por imagem , Animais , Doença Crônica , Cristalização , Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Inflamação/patologia , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluxo Sanguíneo Regional , Doenças Reumáticas/patologia , Tomografia Computadorizada por Raios X , Ácido Úrico
7.
Eur J Immunol ; 47(12): 2101-2112, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28857172

RESUMO

The IL-1 family member IL-36α has proinflammatory and pathogenic properties in psoriasis. IL-36α binds to the IL-36 receptor leading to nuclear factor kappa B/mitogen activated protein kinase mediated cytokine release. The IL-36R antagonist prevents recruitment of IL-1 receptor accessory protein and therefore IL-36-dependent cell activation. In inflamed human tissue, we previously could show that resident B cells and plasma cells (PC) express IL-36α. Further, fibroblast-like synoviocytes (FLS) produced proinflammatory cytokines upon IL-36α-stimulation. We hypothesize an IL-36-specific crosstalk between B cells/PCs and FLS permitting a proinflammatory B cell niche. Here, we firstly demonstrated that B cell lines and B cells from healthy donors express IL-36α and stimulation increased IL-36α in B cells and primary plasmablasts/PCs. Moreover, FLS respond specifically to IL-36α by proliferation and production of matrix metalloproteinases via p38/HSP27 signaling. Importantly, IL-36R-deficiency abrogated IL-36α-induced production of inflammatory mediators in FLS and changed the intrinsic FLS-phenotype. Using an in vitro co-culture system, we could show that IL-36R-deficient FLS had a limited capacity to support PC survival compared to wild-type FLS. Hence, we demonstrated an IL-36R-dependent crosstalk between B cells/PCs and FLS. Our data support the concept of initiation and maintenance of a proinflammatory niche by B cells in the joints.


Assuntos
Fibroblastos/imunologia , Plasmócitos/imunologia , Receptores de Interleucina-1/imunologia , Membrana Sinovial/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/imunologia , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-1/farmacologia , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Plasmócitos/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
8.
Front Immunol ; 8: 722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702024

RESUMO

The interleukin (IL)-1 family member IL-33 has been described as intracellular alarmin with broad roles in wound healing, skin inflammation but also autoimmunity. Its dichotomy between full length (fl) IL-33 and the mature (m) form of IL-33 and its release by necrosis is still not fully understood. Here, we compare functional consequences of both forms in the skin in vivo, and therefore generated two lines of transgenic mice which selectively overexpress mmIL-33 and flmIL-33 in basal keratinocytes. Transgene mRNA was expressed at high level in skin of both lines but not in organs due to the specific K14 promoter. We could demonstrate that transgenic overexpression of mmIL-33 in murine keratinocytes leads to a spontaneous skin inflammation as opposed to flmIL-33. K14-mmIL-33 mice synthesize and secrete high amounts of mmIL-33 along with massive cutaneous manifestations, like increased epidermis and dermis thickness, infiltration of mast cells in the epidermis and dermis layers and marked hyperkeratosis. Using skin inflammation models such as IL-23 administration, imiquimod treatment, or mechanical irritation did not lead to exacerbated inflammation in the K14-flmIL-33 strain. As radiation induces a strong dermatitis due to apoptosis and necrosis, we determined the effect of fractionated radiation (12 Gy, 4 times). In comparison to wild-type mice, an increase in ear thickness in flmIL-33 transgenic mice was observed 25 days after irradiation. Macroscopic examination showed more severe skin symptoms in irradiated ears compared to controls. In summary, secreted mmIL-33 itself has a potent capacity in skin inflammation whereas fl IL-33 is limited due to its intracellular retention. During tissue damage, fl IL-33 exacerbated radiation-induced skin reaction.

9.
Curr Opin Rheumatol ; 29(2): 208-213, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27926540

RESUMO

PURPOSE OF REVIEW: This review provides an update on the new interleukin-1 (IL-1) cytokine family members in inflammatory diseases with focus on recent findings concerning the family members IL-36, IL-37, and IL-38 and their different expression patterns. RECENT FINDINGS: The IL-1 cytokines are known to be involved in many different inflammatory and autoimmune diseases. The latest IL-1 family members, IL-36, IL-37, and IL-38 have been shown to be differently regulated during course of disease. Studies of patients suffering from inflammatory diseases revealed that those cytokines are upregulated in the serum as well as in inflamed tissue. Both, epithelial cells and infiltrating peripheral mononuclear blood cells serve as source of the cytokines IL-36, IL-37, and IL-38 triggering different outcomes. These results could be confirmed in different mouse models and in-vitro and ex-vivo studies. SUMMARY: IL-36, IL-37, and IL-38 are involved in the pathogenesis of the inflammatory diseases psoriasis, rheumatoid arthritis, gout, systemic lupus erythematosus as well as Crohn's disease. Thereby IL-36 acts proinflammatory triggering further inflammatory mediators. In contrast, IL-37 and IL-38 are upregulated to counteract. Understanding the imbalance of the IL-1 family is crucial for future therapeutics.


Assuntos
Doenças Autoimunes/imunologia , Gota/imunologia , Interleucina-1/imunologia , Interleucinas/imunologia , Psoríase/imunologia , Animais , Artrite Reumatoide/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Inflamação , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Doenças Reumáticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA