Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39235529

RESUMO

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, and B cell and CD4+ T cell responses emerged after vaccination. Five vaccinees developed serum autologous tier 2 nAbs (ID50 titer, 1:28-1:8647) after two to three doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/Alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes.


Assuntos
Vacinas contra a AIDS , Adjuvantes Imunológicos , Compostos de Alúmen , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Neutralizantes/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Compostos de Alúmen/administração & dosagem , Adulto , Adjuvantes Imunológicos/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Anti-HIV/imunologia , Feminino , HIV-1/imunologia , Masculino , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Linfócitos B/imunologia , Adjuvantes de Vacinas , Pessoa de Meia-Idade , Adulto Jovem , Linfócitos T CD4-Positivos/imunologia
6.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766048

RESUMO

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

7.
Tissue Eng Part A ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38753711

RESUMO

Rationale: Elevated shear stress (ESS) induces vascular remodeling in veins exposed to arterial blood flow, which can lead to arteriovenous (AV) fistula failure. The molecular mechanisms driving remodeling have not been comprehensively examined with a single-cell resolution before. Objective: Using an in vivo animal mode, single-cell RNA sequencing, and histopathology, we precisely manipulate blood flow to comprehensively characterize all cell subpopulations important during vascular remodeling. Methods: AV loops were created in saphenous vessels of rats using a contralateral saphenous vein interposition graft to promote ESS. Saphenous veins with no elevated shear stress (NSS) were anastomosed as controls. Findings: ESS promoted transcriptional homogeneity, and NSS promoted considerable heterogeneity. Specifically, ESS endothelial cells (ECs) showed a more homogeneous transcriptional response promoting angiogenesis and upregulating endothelial-to-mesenchymal transition inhibiting genes (Klf2). NSS ECs upregulated antiproliferation genes such as Cav1, Cst3, and Btg1. In macrophages, ESS promoted a large homogeneous subpopulation, creating a mechanically activated, proinflammatory and thus proangiogenic myeloid phenotype, whereas NSS myeloid cells expressed the anti-inflammatory and antiangiogenetic marker Mrc1. Conclusion: ESS activates unified gene expression profiles to induce adaption of the vessel wall to hemodynamic alterations. Targeted depletion of the identified cellular subpopulations may lead to novel therapies to prevent excessive venous remodeling, intimal hyperplasia, and AV fistula failure.

8.
Cell Syst ; 15(6): 488-496, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38810640

RESUMO

As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as "is-a" relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.


Assuntos
Processamento de Linguagem Natural , Semântica , Humanos , Genes/genética , Ontologia Genética , Biologia Computacional/métodos , Animais
9.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
12.
Adv Wound Care (New Rochelle) ; 13(4): 155-166, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38299969

RESUMO

Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and ß-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and ß-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and ß-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent ß-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and ß-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and ß-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while ß-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.


Assuntos
Cicatriz , beta-Glucanas , ortoaminobenzoatos , Animais , Camundongos , beta-Glucanas/farmacologia , Colágeno , Camundongos Endogâmicos C57BL , Cicatrização
13.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113333

RESUMO

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Actinas , Guanosina Trifosfato , Quinases Ativadas por p21 , Proteínas Proto-Oncogênicas p21(ras) , Receptor IGF Tipo 1 , Proteína rhoA de Ligação ao GTP/genética , Transdução de Sinais , Neoplasias Gástricas/genética
14.
Cell Rep ; 42(11): 113355, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37922313

RESUMO

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Oncogenes , Transformação Celular Neoplásica/genética , Neoplasias/genética , Carcinogênese/genética , Amplificação de Genes
15.
Curr Opin HIV AIDS ; 18(6): 323-330, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751359

RESUMO

PURPOSE OF REVIEW: Recent advances in the understanding of the difficult immunologic requirements for the induction of broadly neutralizing antibodies for HIV have spurred interest in optimizing vaccine approaches intended to stimulate a robust germinal center reaction. In preclinical models, techniques to optimize the germinal center response have included alterations in the timing, dose, and delivery method of immunogens and have resulted in substantially enhanced germinal center responses in lymph nodes and neutralizing antibodies in serum. One of the most promising approaches involves splitting the initial dose of vaccine into a series of gradual escalating doses administration ("fractional escalating doses"). In principle, these techniques may have broad implications for vaccines targeting a robust antibody response. RECENT FINDINGS: We review the upcoming vaccine trials that will test these concepts in clinical practice. The trials include both HIV and non-HIV immunogens, and will involve testing these concepts in both healthy adults and immunocompromised persons. SUMMARY: There are multiple trials that will test whether techniques to alter vaccine delivery such as fractional escalating doses enhances immunologic outcomes.

16.
Genome Biol ; 24(1): 192, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612728

RESUMO

BACKGROUND: Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies-genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines. RESULTS: We find that CRISPR screens accurately identify more gene dependencies per cell line, but the majority of each cell line's dependencies are part of a set of 1867 genes that are shared dependencies across the entire collection (pan-lethals). While RNAi knockdown of about 30% of these genes is also pan-lethal, approximately 50% have selective dependency patterns across cell lines, suggesting they could still be cancer vulnerabilities. The accuracy of the unique RNAi selectivity is supported by associations to multi-omics profiles, drug sensitivity, and other expected co-dependencies. CONCLUSIONS: Incorporating RNAi data for genes that are pan-lethal knockouts facilitates the discovery of a wider range of gene targets than could be detected using the CRISPR dataset alone. This can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and reinforce the importance of partial gene suppression methods in building a cancer dependency map.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Neoplasias/genética , Técnicas Genéticas , Interferência de RNA , Linhagem Celular
18.
Genome Biol ; 24(1): 147, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394429

RESUMO

Sequencing has revealed hundreds of millions of human genetic variants, and continued efforts will only add to this variant avalanche. Insufficient information exists to interpret the effects of most variants, limiting opportunities for precision medicine and comprehension of genome function. A solution lies in experimental assessment of the functional effect of variants, which can reveal their biological and clinical impact. However, variant effect assays have generally been undertaken reactively for individual variants only after and, in most cases long after, their first observation. Now, multiplexed assays of variant effect can characterise massive numbers of variants simultaneously, yielding variant effect maps that reveal the function of every possible single nucleotide change in a gene or regulatory element. Generating maps for every protein encoding gene and regulatory element in the human genome would create an 'Atlas' of variant effect maps and transform our understanding of genetics and usher in a new era of nucleotide-resolution functional knowledge of the genome. An Atlas would reveal the fundamental biology of the human genome, inform human evolution, empower the development and use of therapeutics and maximize the utility of genomics for diagnosing and treating disease. The Atlas of Variant Effects Alliance is an international collaborative group comprising hundreds of researchers, technologists and clinicians dedicated to realising an Atlas of Variant Effects to help deliver on the promise of genomics.


Assuntos
Variação Genética , Genômica , Humanos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Medicina de Precisão
19.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237081

RESUMO

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Genômica , Genoma , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
20.
Nat Commun ; 14(1): 1933, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024492

RESUMO

Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.


Assuntos
Neoplasias Ósseas , Cordoma , Humanos , Cordoma/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Genes Essenciais , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , DNA Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA