Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 7(1): e0080821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019670

RESUMO

Meconium constitutes infants' first bowel movements postnatally. The consistency and microbial load of meconium are different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with negative health outcomes, but its composition is not well described, especially in preterm infants. Here, we characterized the meconium microbiomes from 330 very preterm infants (gestational ages 28 to 32 weeks) from 15 hospitals in Germany and in fecal samples from a subset of their mothers (N = 217). Microbiome profiles were compiled using 16S rRNA gene sequencing with negative and positive controls. The meconium microbiome was dominated by Bifidobacterium, Staphylococcus, and Enterococcus spp. and was associated with gestational age at birth and age at sample collection. Bifidobacterial abundance was negatively correlated with potentially pathogenic genera. The amount of bacterial DNA in meconium samples varied greatly across samples and was associated with the time since birth but not with gestational age or hospital site. In samples with low bacterial load, human mitochondrial sequences were highly amplified using commonly used, bacterial-targeted 16S rRNA primers. Only half of the meconium samples contained sufficient bacterial material to study the microbiome using a standard approach. To facilitate future meconium studies, we present a five-level scoring system ("MecBac") that predicts the success of 16S rRNA bacterial sequencing for meconium samples. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies. IMPORTANCE Meconium is present in the intestines of infants before and after birth and constitutes their first bowel movements postnatally. The consistency, composition and microbial load of meconium is largely different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with short-term and long-term negative health outcomes, but its composition is not yet well described, especially in preterm infants. We provide a characterization of the microbiome structure and composition of infant meconium and maternal feces from a large study cohort and propose a method to evaluate meconium samples for bacterial sequencing suitability. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies.


Assuntos
Mecônio , Microbiota , Adulto , Bactérias/genética , Bifidobacterium/genética , Alemanha , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Mecônio/microbiologia , RNA Ribossômico 16S/genética
2.
BMJ Open ; 9(11): e032617, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753895

RESUMO

INTRODUCTION: The healthy 'eubiosis' microbiome in infancy is regarded as the microbiome derived from term, vaginally delivered, antibiotic free, breastfed infants at 4-6 months. Dysbiosis is regarded as a deviation from a healthy state with reduced microbial diversity and deficient capacity to control drug-resistant organisms. Preterm infants are highly sensitive to early gut dysbiosis. Latter has been associated with sepsis and necrotising enterocolitis, but may also contribute to long-term health problems. Probiotics hold promise to reduce the risk for adverse short-term outcomes but the evidence from clinical trials remains inconclusive and none has directly assessed the effects of probiotics on the microbiome at high resolution. METHODS AND ANALYSIS: A randomised, double blind, placebo-controlled study has been designed to assess the safety and efficacy of the probiotic mix of Bifidobacterium longum and infantis and Lactobacillus acidophilus in the prevention of gut dysbiosis in preterm infants between 28+0 and 32+6 weeks of gestation. The study is conducted in 18 German neonatal intensive care units. Between April 2018 and March 2020, 654 preterm infants of 28+0-32+6 weeks of gestation will be randomised in the first 48 hours of life to 28 days of once daily treatment with either probiotics or placebo. The efficacy endpoint is the prevention of gut dysbiosis at day 30 of life. A compound definition of gut dysbosis is used: (1) colonisation with multidrug-resistant organisms or gram-negative bacteria with high epidemic potential or (2) a significant deviation of the gut microbiota composition as compared with healthy term infants. Dysbiosis is determined by (1) conventional microbiological culture and (2) phylogenetic microbiome analysis by high-throughput 16S rRNA and metagenome sequencing. Persistence of dysbiosis will be assessed at 12-month follow-up visits. Side effects and adverse events related to the intervention will be recorded. Key secondary endpoint(s) are putative consequences of dysbiosis. A subgroup of infants will be thoroughly phenotyped for immune parameters using chipcytometry. ETHICS AND DISSEMINATION: Ethics approval was obtained in all participating sites. Results of the trial will be published in peer-review journals, at scientific meetings, on the website (www.primal-study.de) and via social media of parent organisations. TRIAL REGISTRATION NUMBER: DRKS00013197; Pre-results.


Assuntos
Bifidobacterium longum subspecies infantis , Bifidobacterium longum , Disbiose/prevenção & controle , Recém-Nascido Prematuro , Lactobacillus acidophilus , Probióticos/administração & dosagem , Método Duplo-Cego , Enterocolite Necrosante/prevenção & controle , Fezes/microbiologia , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Estudos Multicêntricos como Assunto , RNA Ribossômico 16S/análise , Ensaios Clínicos Controlados Aleatórios como Assunto , Sepse/prevenção & controle
3.
Environ Pollut ; 231(Pt 2): 1507-1517, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967568

RESUMO

Municipal wastewater contains multi-component mixtures of active pharmaceutical ingredients (APIs). This could shape microbial communities in sewage treatment plants (STPs) and the effluent-receiving ecosystems. In this paper we assess the risk of antimicrobial effects in STPs and the aquatic environment for a mixture of 18 APIs that was previously detected in the effluent of a European municipal STP. Effects on microbial consortia (collected from a separate STP) were determined using respirometry, enumeration of culturable microorganisms and community-level physiological profiling. The mixture toxicity against selected bacteria was assessed using assays with Pseudomonas putida and Vibrio fischeri. Additional data on the toxicity to environmental bacteria were compiled from literature in order to assess the individual and expected joint bacterial toxicity of the pharmaceuticals in the mixture. The reported effluent concentration of the mixture was 15.4 nmol/l and the lowest experimentally obtained effect concentrations (EC10) were 242 nmol/l for microbial consortia in STPs, 225 nmol/l for P. putida and 73 nmol/l for V. fischeri. The lowest published effect concentrations (EC50) of the individual antibiotics in the mixture range between 15 and 150 nmol/l, whereas 0.9-190 µmol/l was the range of bacterial EC50 values found for the non-antibiotic mixture components. Pharmaceutical cocktails could shape microbial communities at concentrations relevant to STPs and the effluent receiving aquatic environment. The risk of antimicrobial mixture effects was completely dominated by the presence of antibiotics, whereas other pharmaceutical classes contributed only negligibly to the mixture toxicity. The joint bacterial toxicity can be accurately predicted from the individual toxicity of the mixture components, provided that standardized data on representative bacterial strains becomes available for all relevant compounds. These findings argue for a more sophisticated bacterial toxicity assessment of environmentally relevant pharmaceuticals, especially for those with a mode of action that is known to specifically affect prokaryotic microorganisms.


Assuntos
Anti-Infecciosos/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Esgotos/análise , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Anti-Infecciosos/análise , Bioensaio , Valor Preditivo dos Testes , Pseudomonas putida/efeitos dos fármacos , Medição de Risco , Esgotos/microbiologia , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 23(15): 14791-804, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25475615

RESUMO

Antineoplastic drugs are important in the treatment of cancer. Some interact directly with the deoxyribonucleic acid (DNA) and are of utmost importance in terms of risk. As highly active compounds, antineoplastics and their metabolites are largely excreted into wastewater and are found in the aquatic environment up to the lower µg/L range. Their predicted environmental concentrations are often below the action limit set in the European Medicines Agency (EMA) guideline. An in-depth risk assessment regarding their presence and effects in the aquatic environment is often not performed, and there is a lack of knowledge. This study considered whether there is an underestimation of possible risks associated with the presence of antineoplastic drugs with regard to trigger value stated in the EMA and FDA guidelines. In a balance, we identified a total of 102 active pharmaceutical ingredients of the ATC-group L01 (antineoplastic agents), which are environmentally relevant. In Germany, 20.7 t of antineoplastic agents was consumed in 2012. The share of drugs with DNA-damaging properties increased within the last 6 years from 24 up to 67 %. Solely, capecitabine and 5-fluorouracil amount together 8 t-which corresponds to 39 % of the total antineoplastic consumption. Around 80 % of the total mass consumed could be attributed to prescriptions issued by office-based practitioners and is mostly excreted at home. Based on the different mode of actions, a case-by-case evaluation of the risk connected to their presence in the environment is recommended. DNA-damaging drugs should be assessed independently as no action limit can be assumed.


Assuntos
Antineoplásicos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Dano ao DNA , Monitoramento Ambiental , Alemanha , Humanos , Medição de Risco
5.
Chemosphere ; 119: 1240-1246, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460767

RESUMO

Biodegradation is the most important attenuation process for most of organic chemicals in the environment. This process decides whether the organic substance itself or its degradation products rests in the environment and should be considered for a further risk assessment. This work presents the development of a water sediment screening test, based on OECD guideline 308, with a high significance to environmental conditions and with a good reproducibility and consistency of results. The increased reproducibility was achieved by creating an artificial and standardized medium, based on the existing OECD guidelines OECD 302C, 301D and 218. Each test consisted of five different series: blank, quality control, test, toxicity control and abiotic control. Biodegradation was assessed by measurement of pressure difference in closed vessels using the OxiTop(®) system. Aniline, diethylene glycol and sodium acetate were used to optimize and validate test conditions. Additionally, two pharmaceuticals: Acetaminophen and ciprofloxacin (CIP) were tested as an example of possible test application. Acetaminophen was mainly removed from the system by biodegradation whereas CIP was removed from water phase by sorption onto sediment. Water sediment test proved to be a promising tool for the biodegradation investigation of chemicals in the water-sediment interface.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Modelos Químicos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Água/química , Aerobiose , Biodegradação Ambiental , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Reprodutibilidade dos Testes , Medição de Risco
6.
Chemosphere ; 99: 96-101, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24216267

RESUMO

Engineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent. We have investigated the biodegradability of organically surface functionalized silica (SiO2) particles bearing technically relevant groups such as amino-, carboxyl-, benzyl-, sulfonate-, chloro-, and phosphatoethyl-derivatized alkyls. Essential physicochemical properties including zeta potential, isoelectric point, morphology, surface area, porosity, surface density, and elemental composition of the particles were investigated, followed by biodegradability testing using the Closed Bottle Test (OECD 301D). None of the particles met the biodegradability threshold value of 60%. Only a slight biodegradation was revealed for SiO2-Benzyl (13.7±6.7%) and for SiO2-3-Chlorpropane (10.8±1.5%). For the other particles biodegradability was below the normal background fluctuation of 5%. The results were different of those obtained from structurally similar chemicals not being functionalized on the particle surface and from general rules of structure-biodegradation prediction of organic molecules. Therefore, our results suggest that the attachment of the organic groups heavily reduces their biodegradability, increases their residence time and possibility for adverse effects to environmental species.


Assuntos
Coloides/química , Modelos Químicos , Dióxido de Silício/química , Poluentes Químicos da Água/química , Biodegradação Ambiental
7.
Arch Environ Contam Toxicol ; 57(2): 264-73, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19039514

RESUMO

The detection of antibiotics and resistant bacteria in sewage treatment plants (STPs) has stimulated a discussion on the origin and selection of resistant bacteria during sewage treatment. Currently, there is little data available regarding the effects of realistic mixtures of antibiotics on the bacteria present in the aeration tanks of STPs. In this study we used four laboratory-scale sewage treatment plants (LSSTPs) to study the effects of antibiotics on bacteria during sewage treatment under standardized conditions. Two plants were fed with a mixture of antibiotics at two concentration levels based on the average annual input of antibiotics into German municipal STPs. The total operational period was 84 days. A multiresistant bacterium (Acinetobacter baumannii) was added twice to two of the plants. The fate of the multiresistant bacterium was monitored. The mix of antibiotics did not affect the purification efficiency. The presence of the antibiotics did not favour the multiresistant bacterium. No difference was detected between the test plant and the controls.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Esgotos/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Meios de Cultura , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Modelos Biológicos , Poliaminas/farmacologia , Quinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA