Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(35): 25586-25597, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39144369

RESUMO

Sulfur compounds in fuel such as thiophene, benzothiophene and dibenzothiophene are the primary source of SO x emissions, leading to environmental pollution and acid rain. In this study, we synthesized a layered oxygen-doped graphitic carbon nitride (OCN) structure and integrated ZnO and TiO2 nanoparticles onto the OCN surface through a microwave-assisted sol-gel method. The X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) results confirmed a robust interaction between the ZnO and TiO2 nanoparticles and the oxygen-doped g-C3N4 (OCN) surface, as indicated by the formation of C-N-Ti and C-O-Ti bonds. This interaction notably improved the optoelectronic properties of the ZnO-TiO2/OCN composite, yielding increased visible light absorption, reduced charge recombination rate, and enhanced separation and transfer of photogenerated electron-hole pairs. The oxygen doping into the CN network could alter the band structure and expand the absorption range of visible light. The ZnO-TiO2/OCN photocatalyst demonstrated remarkable desulfurization capabilities, converting 99.19% of dibenzothiophene (DBT) to dibenzothiophene sulfone (DBT-O2) at 25 °C, and eliminating 92.13% of DBT from real-world fuel oil samples. We conducted in-depth analysis of the factors impacting the redox process of DBT, including the ZnO ratio, initial DBT concentration, catalyst dosage, stability, and O/S molar ratio. Radical trapping experiments established that ˙O2 -, ˙OH and h+ radicals significantly influence the reaction rate. The obtained results indicated that the ZnO-TiO2/OCN photocatalyst represents a promising tool for future fuel oil desulfurization applications.

2.
J Anal Methods Chem ; 2020: 6693595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457037

RESUMO

In the present work, we reported the simple way to fabricate an electrochemical sensing platform to detect Bisphenol A (BPA) using galvanostatic deposition of Au on a glassy carbon electrode covered by cetyltrimethylammonium bromide (CTAB). This material (CTAB) enhances the sensitivity of electrochemical sensors with respect to the detection of BPA. The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. The results displayed a low detection limit (22 nm) and a linear range from 0.025 to 10 µm along side with high reproducibility (RSD = 4.9% for seven independent sensors). Importantly, the prepared sensors were selective enough against interferences with other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting BPA in real plastic water drinking bottle samples with high accuracy (recovery range = 96.60%-102.82%) and it is in good agreement with fluorescence measurements.

3.
RSC Adv ; 10(69): 42212-42220, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516768

RESUMO

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate-graphene oxide (Cu-BTC/GO) composite. The sensor was prepared by drop-casting Cu-BTC/GO suspension onto the electrode surface followed by electrochemical reduction, leading to the generation of an electrochemically reduced graphene oxide network (ErGO). By combining the large specific area of the Cu-BTC matrix with the electrical percolation from the graphene network, the number of accessible reaction sites was strongly increased, which consequently improved the detection performance. The electrochemical characteristics of the composite were revealed by cyclic voltammetry and electrochemical impedance spectroscopy. For the detection of 2,4-DCP, differential pulse voltammetry was used to emphasize the faradaic reaction related to the oxidation of the analyte. The results displayed a low detection limit (83 × 10-9 M) and a linear range from 1.5 × 10-6 M to 24 × 10-6 M alongside high reproducibility (RSD = 2.5% for eight independent sensors) and good stability. Importantly, the prepared sensors were sufficiently selective against interference from other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting 2,4-DCP in real field samples with high accuracy (recovery range = 97.17-104.15%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA