Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 87(2): 189-94, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21872622

RESUMO

Clostridium perfringens is used as an indicator for persistent faecal pollution as well as to monitor the efficacy of water treatment processes. For these purposes, differentiation between C. perfringens and other Clostridia is essential and is routinely carried out by phenotypic standard tests as proposed in the ISO/CD 6461-2:2002 (ISO_LGMN: lactose fermentation, gelatine liquidation, motility and nitrate reduction). Because the ISO_LGMN procedure is time consuming and labour intensive, the acid phosphatase test was investigated as a possible and much more rapid alternative method for confirmation. The aim of our study was to evaluate and compare confirmation results obtained by these two phenotypic methods using genotypically identified strains, what to our knowledge has not been accomplished before. For this purpose, a species specific PCR method was selected based on the results received for type strains and genotypically characterised environmental strains. For the comparative investigation type strains as well as presumptive C. perfringens isolates from water and faeces samples were used. The acid phosphatase test revealed higher percentage (92%) of correctly identified environmental strains (n=127) than the ISO_LGMN procedure (83%) and proved to be a sensitive and reliable confirmation method.


Assuntos
Fosfatase Ácida/análise , Proteínas de Bactérias/análise , Clostridium perfringens/isolamento & purificação , Ensaios Enzimáticos/métodos , Reação em Cadeia da Polimerase/métodos , Microbiologia da Água , Fosfatase Ácida/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Fezes/microbiologia , Gangrena Gasosa/diagnóstico , Gangrena Gasosa/microbiologia , Humanos
2.
Environ Microbiol ; 10(10): 2598-608, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18564182

RESUMO

The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.


Assuntos
Bacteroidetes/isolamento & purificação , Fezes/microbiologia , Microbiologia da Água , Poluição da Água , Animais , Contagem de Colônia Microbiana , DNA Bacteriano/isolamento & purificação , Monitoramento Ambiental , Humanos , Reação em Cadeia da Polimerase/métodos , Ruminantes
3.
Inorg Chem ; 40(16): 3912-21, 2001 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-11466049

RESUMO

Cyclodextrin cups have been employed to build supramolecular systems consisting of metal and organic photoactive/redox-active components; the photoinduced communication between redox-active units assembled in water via noncovalent interactions is established. The functionalization of a beta-cyclodextrin with a terpyridine unit, ttp-beta-CD, is achieved by protection of all but one of the hydroxyl groups by methylation and attachment of the ttp unit on the free primary hydroxyl group. The metalloreceptors [(beta-CD-ttp)Ru(ttp)][PF(6)](2), [(beta-CD-ttp)Ru(tpy)][PF(6)](2), and [Ru(beta-CD-ttp)(2)][PF(6)](2) are synthesized and fully characterized. The [(beta-CD-ttp)Ru(ttp)][PF(6)](2) metalloreceptor exhibits luminescence in water, centered at 640 nm, from the (3)MLCT state with a lifetime of 1.9 ns and a quantum yield of Phi = 4.1 x 10(-)(5). Addition of redox-active quinone guests AQS, AQC, and BQ to an aqueous solution of [(beta-CD-ttp)Ru(ttp)](2+) results in quenching of the luminescence up to 40%, 20%, and 25%, respectively. Measurement of the binding strength indicates that, in saturation conditions, 85% for AQS and 77% for AQC are bound. The luminescence quenching is attributed to an intercomponent electron transfer from the appended ruthenium center to the quinone guest inside the cavity. Control experiments demonstrate no bimolecular quenching at these conditions. A photoactive osmium metalloguest, [Os(biptpy)(tpy)][PF(6)], is designed with a biphenyl hydrophobic tail for insertion in the cyclodextrin cavity. The complex is luminescent at room temperature with an emission band maximum at 730 nm and a lifetime of 116 ns. The osmium(III) species are formed for the study of photoinduced electron transfer upon their assembly with the ruthenium cyclodextrin, [(beta-CD-ttp)Ru(ttp)](2+). Time-resolved spectroscopy studies show a short component of 10 ps, attributed to electron transfer from Ru(II) to Os(III) giving an electron transfer rate 9.5 x 10(9) s(-)(1).


Assuntos
Ciclodextrinas/química , Compostos Organometálicos/química , Rutênio/química , beta-Ciclodextrinas , Catálise , Eletroquímica , Glucose/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA