Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172213, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580116

RESUMO

In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.


Assuntos
Poluentes Ambientais , Poluentes Ambientais/toxicidade , Raios Ultravioleta , Plásticos , Nanopartículas/toxicidade
2.
Environ Sci Technol ; 57(47): 18668-18679, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36730709

RESUMO

Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Radical Hidroxila/química , Cloretos , Peróxido de Hidrogênio/química , Oxirredução , Antibacterianos , Poluentes Químicos da Água/análise , Eletrodos
3.
J Hazard Mater ; 416: 126206, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492968

RESUMO

Sludge lysate is an unavoidable and refractory liquid produced from the waste activated sludge hydrothermal pyrolysis, which contains plenty of hazardous refractory organic compounds and value-added organic resources. Here, the proof of concept for an integrated strategy that couples technically compatible pretreatment to microbial electrolysis assisted AD (ME-AD) system is investigated for sludge lysate treatment and resource recovery. The pretreatment process shows a positive effectiveness on the ME-AD by reducing the organic load and inhibitory matters, which promote the residual refractory organic compounds (Maillard reaction products and humic acid-like substances) and carbon sources further biodegradation and bio-transformation. Combining membrane separation with ME-AD increased not only both the yield and purity of methane to 268.76 mL CH4/g COD and 98%, respectively, but also the recovery of 70.0~82.4% crude proteins (9.1 ± 0.5 g/L) from sludge lysate. Alternatively, the alkaline precipitation combined with ME-AD enhanced the recovery efficiency of short-chain fatty acids (SCFAs). The visible decreasing in the unpleasant color of the effluents was observed, implying that the degradation of harmful refractory organic was almost eliminated in sludge lysate. This strategy is worthy to be developed in WWTP for sludge lysate treatment with considerable bio-resources recovery and refractory organics removal.


Assuntos
Metano , Esgotos , Anaerobiose , Reatores Biológicos , Eletrólise , Ácidos Graxos Voláteis , Eliminação de Resíduos Líquidos
4.
J Hazard Mater ; 408: 124416, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158650

RESUMO

Bioelectrochemical systems (BESs) have been known as a promising technology for accelerating aromatic contaminants degradation and energy recovery. However, most existing studies concentrate on aromatics metabolized through a benzoyl-CoA pathway while those metabolized through other pathways are limited. In this work, resorcinol, a typical aromatic contaminant as well as a key central intermediate (other than benzoyl-CoA) involved in aromatics anaerobic biodegradation, was studied in BESs. Unlike the general impression of the relatively poor organic-to-current performance in the aromatics driven BESs, high efficiencies for resorcinol-fed BESs were observed with a current density and coulombic efficiency of up to 0.26 ± 0.05 mAcm-2 and 74.3 ± 10.7%, respectively. The higher performance likely correlates to the readily fermentable property of resorcinol. Analysis of microbial communities in the biofilm suggests a syntrophic interaction between resorcinol-degrading bacteria (RDB) and anode-respiring bacteria (ARB) was involved in current generation. Additional tests involving the removal of accumulated acetate through fast resorcinol feeding indicates that a mechanism based on direct utilization of resorcinol for current generation may also exist. This study extends the knowledge for the fate of aromatics in BESs and indicates that aromatics entering into the resorcinol metabolic pathway can be treated efficiently with good energy recovery efficiency in BESs.


Assuntos
Antagonistas de Receptores de Angiotensina , Fontes de Energia Bioelétrica , Inibidores da Enzima Conversora de Angiotensina , Biodegradação Ambiental , Eletrodos , Elétrons , Resorcinóis
5.
J Hazard Mater ; 392: 122321, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092653

RESUMO

The biological treatment of antibiotic-containing wastewater is a mainstream process, but the antibacterial activity from the persistence of antibiotics would inhibit the biological activity and function of wastewater treatment plants and lead to the risk of transmission of antibiotic resistant bacteria and genes. In this study, UV photolysis was selected as an appropriate pretreatment technology for antibiotic-containing wastewater. It could decompose many kinds of antibiotics and was not inhibited by the coexisting organics in wastewater. The antibacterial activities of five kinds of antibiotics, which were eliminated with UV irradiation, exhibited a significantly positive correlation with their parent compound concentrations. The photodecomposition of the main functional groups in antibiotics contributed to the elimination of antibacterial activity. Defluorination was the main pathway to eliminate the antibacterial activity of antibiotics containing a fluorine substituent (e.g., florfenicol and ofloxacin), while the photoinduced opening of the ß-lactam ring was the most efficient route to eliminate the antibacterial activity of ß-lactam antibiotics (e.g. cefalexin, amoxicillin and ampicillin). These results demonstrated that UV photolysis could be adopted as an efficient and promising pretreatment strategy for the source control of antibiotic antibacterial activity by the decomposition of antibiotic functional groups before the biological treatment unit.


Assuntos
Antibacterianos/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos , Antibacterianos/farmacologia , Fotólise , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Águas Residuárias , Poluentes Químicos da Água/farmacologia
6.
Environ Sci Technol ; 53(2): 1004-1013, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30525505

RESUMO

Traditional technologies for handling nitrogen oxides (NO x) from flue gas commonly entail the formation of harmless nitrogen gas (N2), while less effort has been made to recover the N-containing chemicals produced. In this work, we developed a novel nanomagnetic adsorbent, Fe3O4@EDTA@Fe(II) (MEFe(II)), for NO removal. The NO adsorbed by MEFe(II) was then selectively converted to N2O, a valuable compound in many industries, by using sulfite (a product from desulfurization in flue gas treatment) as the reductant for the regeneration of MEFe(II). Because of the magnetic and solid properties of MEFe(II), the processes of NO adsorption and N2O recovery can be readily carried out under their optimal pH conditions in separate systems. In addition, the produced N2O is easily handled without unwanted release to the atmosphere. At the optimal pH (7.5 and 8.0 for NO adsorption and N2O recovery, respectively), the maximum NO adsorption capacity of MEFe(II) was measured as 0.303 ± 0.037 mmol·g-1, over 90% of which was converted to N2O during the recovery process. Moreover, MEFe(II) exhibited good five consecutive cycles. All of above reactions were performed at room temperature. These findings indicate MEFe(II) may hold great potential for application to NO removal from flue gas with the benefits of resource recovery, decreased chemical use, and low energy consumption.


Assuntos
Compostos Ferrosos , Óxidos de Nitrogênio , Adsorção , Ácido Edético , Gases
7.
Environ Sci Technol ; 53(3): 1501-1508, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592608

RESUMO

Graphene oxide (GO) membranes have the potential to be next-generation membranes. However, the GO layer easily swells in water and risks shedding during the long-term filtration. Organic GO interlayer organic cross-linking agent was not resistant to oxidation, which limits the application scope of GO membrane. In this study, an inorganic cross-linked GO membrane was prepared via the reaction of sodium tetraborate and GO hydroxyl groups, and a -B-O-C- cross-linking bond was detected by X-ray photoelectron spectroscopy (XPS). Additionally, a new atomic force microscope scratch method to evaluate the cross-linking force of a nanoscale GO layer was proposed. It showed that the critical destructive load of the inorganic cross-linked GO membrane increased from 8 to 80 nN, which was a 10-fold increase from that of the nonlinked sample. During the NaOH/sodium dodecyl sulfate (SDS) destructive wash tests, morphology, flux and retention rate of inorganic cross-linked GO remained stable while the comparative membranes showed significant destruction. At the same time, based on the better oxidation resistance, organic membrane fouling was effectively controlled by the introduction of trace ·OH radicals. This study provides a new perspective for GO membrane preparation, interlayer cross-linking force testing and membrane fouling control.


Assuntos
Grafite , Boratos , Filtração , Membranas Artificiais , Óxidos
8.
Bioresour Technol ; 268: 176-182, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077174

RESUMO

It is controversial to introduce oxygen into anode chamber as oxygen would decrease the CE (Coulombic efficiency) while it could also enhance the degradation of aromatics in microbial fuel cell (MFCs). Therefore, it is important to balance the pros and cons of oxygen in aromatics driven MFCs. A RMO (micro-oxygen bioanode MFC) was designed to determine the effect of oxygen on electricity output and phenol degradation. The RMO showed 6-fold higher phenol removal efficiency, 4-fold higher current generation than the RAN (anaerobic bioanode MFC) at a cost of 26.9% decline in CE. The Zoogloea and Geobacter, which account for phenol degradation and current generation, respectively, were dominated in the RMO bioanode biofilm. The biomass also showed great difference between RMO and RAN (114.3 ±â€¯14.1 vs. 2.2 ±â€¯0.5 nmol/g). Therefore, different microbial community, higher biomass as well as the different degradation pathway were suggested as reasons for the better performance in RMO.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Oxigênio , Eletricidade , Eletrodos
9.
Environ Sci Technol ; 52(17): 9972-9982, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067345

RESUMO

The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 ± 0.1 mg m-2 h-1) than single filtration (2.5 ± 0.1 mg m-2 h-1) or batch e-Fenton processes (4.3 ± 0.05 mg m-2 h-1). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.


Assuntos
Grafite , Poluentes Químicos da Água , Antibacterianos , Catálise , Peróxido de Hidrogênio , Ferro , Oxirredução , Tianfenicol/análogos & derivados
10.
Sci Total Environ ; 628-629: 261-270, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438935

RESUMO

Some refractory organic matters or soluble microbial products remained in the effluents of refractory organic wastewater after biological secondary treatment and need an advanced treatment before final disposal. Graphene oxide (GO) was known to have potential to be the next generation membrane material. The functional organics/inorganic salts separation GO membrane preparation and application in wastewater advanced treatment could reduce energy or chemicals consumption and avoid organics/inorganic salts mixed concentrate waste problems after nanofiltration or reverse osmosis. In this study, we developed a novelty GO membrane aiming at advanced purification of organic matters in the secondary effluents of refractory organic wastewater and avoiding the organics/inorganic salts mixed concentrate waste problem. The influence of preparation conditions including pore size of support membrane, the number of GO layers and the applied pressure was investigated. It was found that for organics/inorganic salts mixture separation membrane preparation, the rejection and flux would achieve balance for the support membrane at a pore size of ~0.1µm and the number of GO layers of has an optimization value (~10 layers). A higher assemble pressure (~10bar) contributed to the acquisition of a higher rejection efficiency and lower roughness membrane. This as prepared GO membrane was applied to practical secondary effluent of a chemical synthesis pharmaceuticals wastewater. A good organic matter rejection efficiency (76%) and limited salt separation (<14%) was finally obtained. These results can promote the practical application of GO membrane and the resourcelized treatment of industrial wastewater.

11.
Bioresour Technol ; 190: 451-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25818922

RESUMO

Aim of this study was to find out suitable mixing ratio of food waste and rice husk for their co-digestion in order to overcome VFA accumulation in digestion of food waste alone. Four mixing ratios of food waste and rice husk with C/N ratios of 20, 25, 30 and 35 were subjected to a lab scale anaerobic batch experiment under mesophilic conditions. Highest specific biogas yield of 584L/kgVS was obtained from feedstock with C/N ratio of 20. Biogas yield decreased with decrease in food waste proportion. Further, fresh cow dung was used as inoculum to investigate optimum S/I ratio with the selected feedstock. In experiment 2, feedstock with C/N ratio 20 was subjected to anaerobic digestion at five S/I ratios of 0.25, 0.5, 1.0, 1.5 and 2.0. Specific biogas yield of 557L/kgVS was obtained at S/I ratio of 0.25. However, VFA accumulation occurred at higher S/I ratios due to higher organic loadings.


Assuntos
Biocombustíveis/microbiologia , Fezes/microbiologia , Microbiologia de Alimentos , Oryza/microbiologia , Extratos Vegetais/metabolismo , Eliminação de Resíduos/métodos , Animais , Bovinos , Indústria Alimentícia , Resíduos Industriais/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA