Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Plant Foods Hum Nutr ; 78(4): 654-661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796415

RESUMO

Parkinson's disease (PD) and other age-related neurodegenerative ailments have a strong link to oxidative stress. Bioflavonoid naringenin has antioxidant properties. The effects of pre- and post-naringenin supplementation on a rotenone-induced PD model were examined in this work. Naringenin (50 mg/kg, p.o.) was administered to rats for two weeks before the administration of rotenone in the pre-treatment phase. In contrast, rotenone (1.5 mg/kg, s.c.) was administered for eight days before naringenin (50 mg/kg, p.o.) was supplemented for two weeks in the post-treatment phase. During behavioral investigation, the motor and non-motor signs of PD were observed. Additionally, estimation of neurochemical and biochemical parameters was also carried out. Compared to controls, rotenone treatment substantially increased oxidative stress, altered neurotransmitters, and caused motor and non-motor impairments. Rotenone-induced motor and non-motor impairments were considerably reduced by naringenin supplementation. The supplementation also increased antioxidant enzyme activities and restored the changes in neurotransmitter levels. The findings of this work strongly imply that daily consumption of flavonoids such as naringenin may have a therapeutic potential to combat PD.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Ratos , Animais , Rotenona/toxicidade , Antioxidantes/farmacologia , Alimento Funcional , Modelos Animais de Doenças , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Estresse Oxidativo , Fármacos Neuroprotetores/efeitos adversos
2.
Life Sci ; 323: 121707, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084951

RESUMO

Neuropsychiatric disorders can be modeled on animals to investigate the neural mechanism underlying these disorders. Models of neuropsychiatric disorders, such as anxiety, basically aim to produce the signs and symptoms of human anxiety disorders in laboratory animals. Electric foot-shock is recommended to induce anxiety-like symptoms in rodents. For this purpose, however, a range of current intensities is available in the literature. The present study aims to modify the existing practices of generating anxiety-like symptoms through electric foot-shock by identifying an optimum current intensity and combining it with behavioral paradigms to produce a rat model of anxiety. Furthermore, the validity of the model was confirmed by checking the fulfillment of three validity criteria necessary for the development of any disease model including face validity, construct validity, and predictive validity. In the current study, after pre-testing, 1.0 mA electric intensity was selected to produce the model of anxiety. The results showed that the induction of 1.0 mA electric foot-shock induces abnormal behavioral effects which were similar to anxiety-like effects as evident by social interaction test, light-dark transition test, and open field test. Moreover, aberrations in the levels of the stress hormone, oxidative stress parameters, hippocampal neurotransmitter levels, and cortical-EEG wave pattern were also observed in the rat model of anxiety which were successfully overcome using diazepam. In conclusion, the outcome of our study suggests that electric foot-shock can be an adequate stressor to produce a validated animal model of anxiety and this model can be confidently used to identify and screen new and/or novel anxiolytics.


Assuntos
Transtornos de Ansiedade , Ansiedade , Humanos , Ratos , Animais , Modelos Animais de Doenças , Ansiedade/etiologia , Transtornos de Ansiedade/etiologia , Hormônios , Estresse Oxidativo , Comportamento Animal , Estresse Psicológico/complicações , Estresse Psicológico/psicologia
3.
Metab Brain Dis ; 38(1): 17-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35960461

RESUMO

Alzheimer's disease (AD) is the common type of dementia and is currently incurable. Existing FDA-approved AD drugs may not be effective for everyone, they cannot cure the disease nor stop its progression and their effects diminish over time. Therefore, the present review aimed to explore the role of natural alternatives in the treatment of AD. A systematic search was conducted using Ovid MEDLINE, CINAHL, Cochrane and PubMed databases and reference lists up to November 30, 2021. Only randomized control trials were included and appraised using the National Institute of Health framework. Data analysis showed that herbs like Gingko Biloba, Melissa Officinalis, Salvia officinalis, Ginseng and saffron alone or in combination with curcumin, low-fat diet, NuAD-Trail, and soy lecithin showed significant positive effects on AD. Moreover, combination of natural and pharmaceuticals has far better effects than only allopathic treatment. Thus, different herbal remedies in combination with FDA approved drugs are effective and more promising in treatment of AD.


Assuntos
Doença de Alzheimer , Fitoterapia , Plantas Medicinais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
PLoS One ; 17(10): e0276236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36302045

RESUMO

INTRODUCTION: Diabetes mellitus is a chronic metabolic disorder with an increasing prevalence worldwide. Reduction in blood insulin level alters brain function by inducing oxidative stress with changes in dopamine and norepinephrine neurotransmission, ultimately leading to neuropsychological symptoms. The efficacy of currently available psychotropic drugs is not satisfactory. Therefore, this study was conducted to explore the beneficial effects of a combination of the natural herbs, saffron and chamomile, in treating diabetes and its resultant neuropsychological effects using a rodent model of diabetes mellitus. METHOD: The rats were randomly divided in to eight groups (n = 10), healthy control (HC), diabetic control (DC) and six groups of diabetic rats treated with various concentrations and combinations of saffron and chamomile. Diabetic treatment groups individually received methanolic extract and water decoction of chamomile (30 mg/kg) and saffron (10mg/kg) and their combined half doses (saffron 5mg/kg and chamomile 15mg/kg) for two weeks. Open field test (OFT) and forced swim test (FST) were used to measure the anxiolytic and antidepressant effects of herbs, respectively. Finally, biochemical, and neurochemical estimations were made. RESULTS: The present study suggests the therapeutic effects of herbs especially in co-administrated decoction, against diabetes with improved antioxidant profile and enhanced levels of dopamine and norepinephrine. Anxiolytic and antidepressant effects were evident with improvements in the OFT and FST. Examination of the cortex of the diabetic group revealed cellular damage and tangle formation, which indicates advanced stages of dementia. CONCLUSION: This study shows that the use of a combination of saffron and chamomile improves diabetes control and reduces its related psychiatric effects.


Assuntos
Ansiolíticos , Crocus , Diabetes Mellitus Experimental , Ratos , Camundongos , Animais , Camomila , Diabetes Mellitus Experimental/metabolismo , Ansiolíticos/uso terapêutico , Modelos Animais de Doenças , Dopamina/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antidepressivos/uso terapêutico , Norepinefrina/uso terapêutico
5.
Metab Brain Dis ; 37(8): 2793-2805, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152087

RESUMO

Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.


Assuntos
Quercetina , Esquizofrenia , Humanos , Animais , Ratos , Quercetina/farmacologia , Quercetina/uso terapêutico , Maleato de Dizocilpina/farmacologia , Fragmentação do DNA , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Citocinas , Antioxidantes/farmacologia , Estresse Oxidativo , Modelos Animais de Doenças
6.
Pak J Pharm Sci ; 35(2(Special)): 671-678, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668569

RESUMO

Cadmium is a potent neurotoxin and induces adverse impact on brain function. Protective effects of monoterpenes on the CNS have been reported previously. The present study was designed to investigate the beneficial effect of thymol on cadmium-induced neurotoxicity. Rats were initially divided into 2 groups, vehicle control and thymol. Thymol (40mg/kg) was given orally for 14 days. Each group was subdivided into two groups (Vehicle control and Cadmium, Thymol and Thymol+Cadmium). Cadmium Chloride (5mg/kg) was given for last 3 days only to the groups assigned as Cadmium and Thymol+Cadmium. Behavioral parameters were assessed after 24h of last dose of cadmium. Brain sample were collected and BDNF was measured in hippocampus. The present study suggests that pre-administration of thymol provides a protective therapy against cadmium-induced intoxication by enhancing the brain BDNF levels and plasticity. Results further suggest that thymol not only ameliorates cadmium-induced learning and memory impairment but also reduced anxiety, motor incoordination and depression assessed by various behavioral tests. The study may provide a better apprehension of the neuroprotective role of thymol and highlighting its significance in the diet for human health particularly in cadmium intoxication.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Timol , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cádmio/toxicidade , Cognição , Hipocampo , Ratos , Timol/farmacologia
7.
Pak J Pharm Sci ; 35(1(Supplementary)): 239-245, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228183

RESUMO

Geraniol, a component of essential oil, is reported to have various pharmacological properties. The current study was conducted to demonstrate the dose-dependent neurobehavioral effects of geraniol. Rats were divided into 5 groups (n=7), comprising of control and four test groups for different doses of geraniol including 10, 30, 50 and 100 mg/kg. Geraniol was given for 15 days through intraperitoneal route. Following the administration, anxiety-, depression-like behaviors and memory function were evaluated. Extent of oxidative stress in rat's brain was also assessed by determining the levels of malondialdehyde and antioxidant enzymes activity. The present study revealed that low doses of geraniol produced more potent anxiolytic, antidepressant, nootropic, and antioxidant effects as compared to the higher doses. The findings highlight the dual characteristic of geraniol, acting as antioxidant at lower doses while at higher doses it produces pro-oxidant effects. The results are discussed in the context of dual characteristic of antioxidant compounds.


Assuntos
Monoterpenos Acíclicos/farmacologia , Ansiedade/tratamento farmacológico , Malondialdeído/sangue , Memória/efeitos dos fármacos , Óleos Voláteis/química , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo , Glutationa/metabolismo , Masculino , Ratos , Ratos Wistar
8.
Pak J Pharm Sci ; 34(4(Supplementary)): 1615-1620, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799339

RESUMO

Benzodiazepine administration is known to be related to tolerance and a withdrawal syndrome on sudden cessation. Thymol possesses multiple biological properties especially in the pathogenesis of different brain disorders. However, to the best of our knowledge there is no study that relates the use of thymol to benzodiazepine induced withdrawal symptoms. Therefore the aim of the current study was to investigate the usefulness of thymol in the treatment of benzodiazepine withdrawal syndrome in rats. Animals were divided into four groups, thymol (40mg/kg/ml), diazepam (4 mg/kg), thymol + diazepam and vehicle control group. The treatment was given for 14 days and then suddenly ceased. After 24 h animals were tested in different behavioral paradigms such as physical signs for withdrawal, marble burying test, inverted screen test, elevated plus maze, passive avoidance test and open field activity. The results of the present study revealed that co-administration of thymol significantly reduced the withdrawal symptoms induced by diazepam. Our results further suggest that administration of thymol not only ameliorates rebound anxiety associated with diazepam withdrawal but also improves motor and memory impairment in rats.


Assuntos
Diazepam/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Timol/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Ratos , Ratos Wistar
9.
PLoS One ; 16(11): e0258928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767546

RESUMO

The rotenone-induced animal model of Parkinson's disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.


Assuntos
Antioxidantes/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Quercetina/administração & dosagem , Rotenona/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Masculino , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
10.
Neurochem Res ; 46(12): 3273-3285, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34409523

RESUMO

Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress (CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corticosterone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as depression which induce memory impairment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Curcumina/farmacologia , Depressão/tratamento farmacológico , Dopamina/metabolismo , Transtornos Autoinduzidos/prevenção & controle , Hipocampo/efeitos dos fármacos , Neurotransmissores/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Corticosterona/metabolismo , Depressão/metabolismo , Depressão/patologia , Transtornos Autoinduzidos/etiologia , Transtornos Autoinduzidos/metabolismo , Transtornos Autoinduzidos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Ratos , Ratos Wistar , Estresse Fisiológico
11.
Life Sci ; 277: 119417, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794248

RESUMO

AIMS: Schizophrenia (SZ) is recognized as a neuropsychiatric disorder in humans with accelerated mortality and profound morbidity followed with impairments in social as well as vocational functioning. Though various antipsychotics are being considered as approved treatment therapy for the psychotic symptoms of SZ but they also exert adverse effects and also lack efficacy in treating full spectrum of the disorder. Spirulina platensis (blue-green algae), a nutritional supplement, constitutes a variety of multi-nutrients and possesses a large number of neuroprotective activities. Therefore, present experimental work was designed to evaluate the neuroprotective effects of spirulina in ameliorating the psychosis-like symptoms in dizocilpine-induced rat model of SZ. MATERIALS AND METHODS: The spirulina was tested as preventive and therapeutic regimen at the dose of 180 mg/kg. After pre- and post-treatment with spirulina, rats were subjected to behavioral assessments followed by biochemical and neurochemical estimations. Biomarkers including APO-E, RTN-4, TNF-α, and IL-6 were also estimated using ELISA. KEY FINDINGS: Present results showed that administration of spirulina not only improved behavioral deficits induced by dizocilpine but it also regulates neurotransmission, oligodendrocyte dysfunction and APO-E over expression. Moreover, it also restores the immune response dysfunction by reducing inflammatory cytokines. SIGNIFICANCE: Thus, from present findings it may be suggested that spirulina aids in ameliorating the psychosis-like symptoms induced by dizocilpine in animal model possibly via regulation of neurotransmission and other biomarkers that are extensively used to uncover the etiopathology of SZ. Hence, blue-green algae can be used as an effective therapy for preventive or therapeutic measures in SZ.


Assuntos
Apolipoproteínas E/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Nogo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/prevenção & controle , Spirulina/fisiologia , Animais , Apolipoproteínas E/genética , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Masculino , Proteínas Nogo/genética , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
12.
MethodsX ; 7: 101059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995310

RESUMO

A large portion of the human population is exposed to traumatic events once in their lifetime, 10% of which may undergo post-traumatic stress disorder (PTSD). It is a mental condition triggered by a traumatic event resulting in severe anxiety disorder which may severely affect the daily routine life of the individual. The patient expresses the aversive memory by recalling any fear event related to the traumatic experience. The disruption of fear memory related to fear event is one of the best approaches to treat PTSD. In this regard, pharmacological interventions provide a possible way to erase or lessen the fear memory of the traumatic event. The screening and identification of drugs is one of the crucial steps to introduce new potent drugs in preclinical setup. Pavlovian fear conditioning is the well known experimental protocol to study fear memory. In this article, we are presenting a detailed method of Pavlovian fear conditioning which we have optimized in our lab for the identification of drugs having the potential to disrupt fear memory in the PTSD-rat model. In this protocol, various stages of memory formation including consolidation, reconsolidation, and extinction have been targeted to study the effect of a particular drug.•The protocol provides step by step procedure to study the effects of known or putative drugs in an animal model of PTSD.•The method also explains the separate protocols to target specific stages of memory so that one can identify the effects of drugs on a particular phase of remote or recent memory formation.

13.
Neurochem Res ; 45(11): 2762-2774, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918662

RESUMO

Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.


Assuntos
Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Ruído/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Taurina/farmacologia , Animais , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
14.
Sci Rep ; 10(1): 11206, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641780

RESUMO

Glutamate (Glu), the key excitatory neurotransmitter in the central nervous system, is considered essential for brain functioning and has a vital role in learning and memory formation. Earlier it was considered as a harmful agent but later found to be useful for many body functions. However, studies regarding the effects of free L-Glu administration on CNS function are limited. Therefore, current experiment is aimed to monitor the neurobiological effects of free L-Glu in male rats. L-Glu was orally administered to rats for 5-weeks and changes in behavioral performance were monitored. Thereafter, brain and hippocampus were collected for oxidative and neurochemical analysis. Results showed that chronic supplementation of free L-Glu enhanced locomotor performance and cognitive function of animals which may be attributed to the improved antioxidant status and cholinergic, monoaminergic and glutamatergic neurotransmission in brain and hippocampus. Current results showed that chronic supplementation of L-Glu affects the animal behaviour and brain functioning via improving the neurochemical and redox system of brain. Free L-Glu could be a useful therapeutic agent to combat neurological disturbances however this requires further targeted studies.


Assuntos
Química Encefálica/efeitos dos fármacos , Ácido Glutâmico/administração & dosagem , Hipocampo/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Memória/efeitos dos fármacos , Administração Oral , Animais , Comportamento Animal , Química Encefálica/fisiologia , Suplementos Nutricionais , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Hipocampo/química , Hipocampo/fisiologia , Locomoção/fisiologia , Masculino , Memória/fisiologia , Modelos Animais , Oxirredução/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
15.
Metab Brain Dis ; 35(7): 1189-1200, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32529399

RESUMO

Pistachio contains polyphenolic compounds including flavonoids and anthocyanins which have antioxidant and antiinflammatory activity. Present study was aimed to evaluate the protective effects of pistachio on neurobehavioral and neurochemical changes in rats with Parkinson's disease (PD). Animal model of PD was induced by the injection of rotenone (1.5 mg/kg/day, s.c.) for 8 days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks in both pre- and post-treatment. At the end of treatment brain was dissected out and striatum was isolated for biochemical and neurochemical analysis. Memory was assessed by Morris water maze (MWM) and novel object recognition (NOR) test while open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test were used to observe motor behavior. Rotenone administration significantly (p < 0.01) impaired the memory but pistachio in both pre- and post-treatment groups significantly (p < 0.01) improved memory performance. Rotenone-induced motor deficits were significantly attenuated in both pre- and post-pistachio treatment. Increased oxidative stress and decreased DA and 5-HT levels induced by rotenone were also significantly attenuated by pistachio supplementation. Furthermore, raised apolipoprotein E (APoE) levels in rotenone injected rats were also normalized following treatment with pistachio. Present findings show that pistachio possesses neuroprotective effects and improves memory and motor deficits via increasing DA levels and improving oxidative status in brain.


Assuntos
Apolipoproteínas E/metabolismo , Corpo Estriado/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Pistacia , Extratos Vegetais/uso terapêutico , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Extratos Vegetais/farmacologia , Ratos , Rotenona
16.
Life Sci ; 256: 118014, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32593712

RESUMO

The age and strength of fear memory are two potential parameters that can be influenced by the impairing effects of pharmacological agents on reconsolidation of fear memory. In reconsolidation, stored information is rendered labile again after being reactivated. Pharmacological manipulations at this stage result in an inability to retrieve the fear memories, suggesting that they are erased or persistently inhibited. This fear memory impairment phenomenon can be valuable to treat post-traumatic stress disorders (PTSD). Previously ß-adrenergic antagonist propranolol has been repeatedly reported to impair fear memory in the treatment of PTSD. Atropine has also shown to disrupt memory formation. The present study was therefore designed to compare the effects of atropine and propranolol on reconsolidation of older fear memory in rat model of PTSD using Pavlovian fear conditioning apparatus. For this purpose 18 rats were taken and divided into control, atropine and propranolol groups and subjected to Pavlovian fear conditioning trials in order to develop animal model of PTSD. To evaluate the reconsolidation impairment of fear memory by atropine and propranolol, short term and long term memory was tested after reactivation of fear memory in rats. The present findings demonstrate that atropine significantly decreases fear expression. These results suggest that atropine significantly reduces the strength of fear memories and may be effective in the treatment of psychiatric disorders especially in PTSD.


Assuntos
Atropina/farmacologia , Medo/efeitos dos fármacos , Propranolol/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Antagonistas Adrenérgicos beta/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Memória/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Ratos , Ratos Wistar , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
17.
PLoS One ; 15(1): e0227631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945778

RESUMO

Currently prescribed medications for the treatment of Alzheimer's disease (AD) that are based on acetylcholinesterase inhibition only offer symptomatic relief but do not provide protection against neurodegeneration. There appear to be an intense need for the development of therapeutic strategies that not only improve brain functions but also prevent neurodegeneration. The oxidative stress is one of the main causative factors of AD. Various antioxidants are being investigated to prevent neurodegeneration in AD. The objective of this study was to investigate the neuroprotective effects of naringenin (NAR) against AlCl3+D-gal induced AD-like symptoms in an animal model. Rats were orally pre-treated with NAR (50 mg/kg) for two weeks and then exposed to AlCl3+D-gal (150 mg/kg + 300 mg/kg) intraperitoneally for one week to develop AD-like symptoms. The standard drug, donepezil (DPZ) was used as a stimulator of cholinergic activity. Our results showed that NAR pre-treatment significantly protected AD-like behavioral disturbances in rats. In DPZ group, rats showed improved cognitive and cholinergic functions but the neuropsychiatric functions were not completely improved and showed marked histopathological alterations. However, NAR not only prevented AlCl3+D-gal induced AD-like symptoms but also significantly prevented neuropsychiatric dysfunctions in rats. Results of present study suggest that NAR may play a role in enhancing neuroprotective and cognition functions and it can potentially be considered as a neuroprotective compound for therapeutic management of AD in the future.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Flavanonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Acetilcolinesterase/genética , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Função Executiva/efeitos dos fármacos , Galactose/toxicidade , Masculino , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
18.
Pak J Pharm Sci ; 33(6(Supplementary)): 2785-2791, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33879438

RESUMO

Exposure to cadmium has been extensively increased due to its usage in modern daily life. Inside the human body it induces deteriorating effects in every vital organ including brain. Oxidative stress has been widely implicated in neurotoxicity induced by cadmium exposure. Consumption of dietary source of exogenous antioxidants is one of the recommended ways to extenuate heavy metal-induced oxidative stress. The potential of nuts against heavy-metal induced neurotoxicity has not been investigated earlier. This study was, therefore, conducted to find out the antioxidant ability of almond and walnut in the prevention of cadmium-induced oxidative stress. Rats were treated with nuts (400 mg/kg) daily for 28 days whereas, cadmium (50 mg/kg) was given once in a week. Brain function was monitored in terms of memory performance using Morris water maze and elevated plus maze. Moreover, oxidative stress status was also evaluated. Results showed that weekly exposure of cadmium significantly reduced %memory retention, increased lipid per oxidation and inhibited antioxidant enzymes activity. When nuts supplemented rats were monitored for these parameters, it was observed that almond and walnut have a great potential to reduce cadmium-induced neurotoxicity as evident by decreased oxidative stress and improved memory function in cadmium intoxicated rats.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Juglans , Estresse Oxidativo/efeitos dos fármacos , Prunus dulcis , Animais , Catalase/metabolismo , Suplementos Nutricionais , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
19.
Pak J Pharm Sci ; 33(6(Supplementary)): 2831-2836, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33879444

RESUMO

For centuries, herbs and herbal oils are used for pharmacological purpose. Aloe vera is well-known as silent healer and flax seed oil is known to contain rich amount of omega-3 fatty acids, both are having effects on central nervous system. Valproic acid is anticonvulsant drug with some side effects and has shown effects on behaviors. This study was designed to monitor the effects of valproic acid, aloe vera and flax seed oil on cognitive and anxiolytic behaviors in rats. Animals were categorized into four groups: Control, valproic acid, aloe vera and flax seed oil which were respectively treated with water, valproic acid (300mg/kg), aloe vera (0.4ml/kg) and flax seed oil (1.8ml/kg). The treatment was continued 2 weeks for drug and 3 weeks for aloe vera and flax seed oil. Anxiolytic effect as well as increased GABA levels were observed following drug and oil treatments. Improvement in cognitive function with decrease in acetylcholine esterase activity in aloe vera and flax seed oil while impairment in learning memory with increase acetylcholine esterase activity was observed in rats treated with valproic acid. Results showed substantial decrease in acetylcholinesterase level in aloe vera and flax seed oil supporting the cognitive impact of oils in contrary to drug.


Assuntos
Aloe , Ansiolíticos/farmacologia , Óleo de Semente do Linho/farmacologia , Memória/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/análise
20.
Pak J Pharm Sci ; 33(4(Supplementary)): 1847-1853, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33612469

RESUMO

Spirulina platensis (blue-green algae) is a nutritional supplement. It constitutes of high content of protein, antioxidants, various phytopigments and possesses neuroprotective activities. Schizophrenia (SZ) is recognized as a neuropsychiatric disorder in humans with a reduced lifespan followed with impairments in social as well as vocational functioning. Major psychotic symptoms of SZ cluster into three categories: positive, negative and cognitive dysfunctions. Dizocilpine recognized as one of the best drugs to mimic full spectrum of SZ can develop an animal model of the disorder. Various antipsychotics are considered as approved treatment therapy for the psychotic symptoms of SZ but they also exert adverse effects. Thus, there is an excessive need for novel treatment(s) with negligible adverse effects. Present study was designed to evaluate the neuroprotective effects of spirulina in ameliorating the psychosis- like symptoms in dizocilpine-induced rat model of SZ. Spirulina was tested at the dose of 180 mg/kg. Results showed that administration of spirulina improved behavioral deficits and combated the oxidative damage evident by a significant reduction in lipid peroxidation and increase in antioxidant level. Thus, from present findings it may be suggested that spirulina can be used as a therapy for preventive or therapeutic measures.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Spirulina/química , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA