Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Circulation ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586957

RESUMO

BACKGROUND: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS: Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS: RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS: We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.

2.
Front Oncol ; 13: 1151343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441426

RESUMO

The functionality and longevity of hematopoietic tissue is ensured by a tightly controlled balance between self-renewal, quiescence, and differentiation of hematopoietic stem cells (HSCs) into the many different blood lineages. Cell fate determination in HSCs is influenced by signals from extrinsic factors (e.g., cytokines, irradiation, reactive oxygen species, O2 concentration) that are translated and integrated by intrinsic factors such as Transcription Factors (TFs) to establish specific gene regulatory programs. TFs also play a central role in the establishment and/or maintenance of hematological malignancies, highlighting the need to understand their functions in multiple contexts. TFs bind to specific DNA sequences and interact with each other to form transcriptional complexes that directly or indirectly control the expression of multiple genes. Over the past decades, significant research efforts have unraveled molecular programs that control HSC function. This, in turn, led to the identification of more than 50 TF proteins that influence HSC fate. However, much remains to be learned about how these proteins interact to form molecular networks in combination with cofactors (e.g. epigenetics factors) and how they control differentiation, expansion, and maintenance of cellular identity. Understanding these processes is critical for future applications particularly in the field of cell therapy, as this would allow for manipulation of cell fate and induction of expansion, differentiation, or reprogramming of HSCs using specific cocktails of TFs. Here, we review recent findings that have unraveled the complexity of molecular networks controlled by TFs in HSCs and point towards possible applications to obtain functional HSCs ex vivo for therapeutic purposes including hematological malignancies. Furthermore, we discuss the challenges and prospects for the derivation and expansion of functional adult HSCs in the near future.

3.
Sci Adv ; 9(17): eadf9063, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126544

RESUMO

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.


Assuntos
Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
4.
Blood ; 142(3): 274-289, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-36989489

RESUMO

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Assuntos
Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pimozida/uso terapêutico , Camundongos Transgênicos
5.
Dev Dyn ; 252(5): 647-667, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606449

RESUMO

BACKGROUND: The gene encoding the transcription factor, Grainyhead-like 3 (Grhl3), plays critical roles in mammalian development and homeostasis. Grhl3-null embryos exhibit thoraco-lumbo-sacral spina bifida and soft-tissue syndactyly. Additional studies reveal that these embryos also exhibit an epidermal proliferation/differentiation imbalance. This manifests as skin barrier defects resulting in peri-natal lethality and defective wound repair. Despite these extensive analyses of Grhl3 loss-of-function models, the consequences of gain-of-function of this gene have been difficult to achieve. RESULTS: In this study, we generated a novel mouse model that expresses Grhl3 from a transgene integrated in the Rosa26 locus on an endogenous Grhl3-null background. Expression of the transgene rescues both the neurulation and skin barrier defects of the knockout mice, allowing survival into adulthood. Despite this, the mice are not normal, exhibiting a range of phenotypes attributable to dysregulated Grhl3 expression. In mice homozygous for the transgene, we observe a severe Shaker-Waltzer phenotype associated with hearing impairment. Micro-CT scanning of the inner ear revealed profound structural alterations underlying these phenotypes. In addition, these mice exhibit other developmental anomalies including hair loss, digit defects, and epidermal dysmorphogenesis. CONCLUSION: Taken together, these findings indicate that diverse developmental processes display low tolerance to dysregulation of Grhl3.


Assuntos
Proteínas de Ligação a DNA , Disrafismo Espinal , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Disrafismo Espinal/genética , Epiderme/metabolismo , Camundongos Knockout , Mamíferos/metabolismo
6.
Leukemia ; 36(12): 2802-2816, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229595

RESUMO

ETP-ALL (Early T cell Progenitor Acute Lymphoblastic Leukemia) represents a high-risk subtype of T cell acute lymphocytic leukemia (T-ALL). Therapeutically, ETP-ALL patients frequently relapse after conventional chemotherapy highlighting the need for alternative therapeutic approaches. Using our ZEB2Tg ETP-ALL mouse model we previously documented the potential utility of the catalytic LSD1 inhibitor (GSK2879552) for treating mouse/human ETP-ALL. However, this approach proved to be inefficient, especially in killing human LOUCY cell ETP-ALL xenografts in vivo. Here we have revealed the novel involvement of ZEB2/LSD1 complexes in repressing the intrinsic apoptosis pathway by inhibiting the expression of several pro-apoptotic proteins such as BIM (BCL2L11) as a major driver for ETP-ALL survival. Treatment with LSD1i (particularly with the steric inhibitor SP2509) restored the expression of ZEB2/LSD1 pro-apoptotic BIM (BCL2L11) target. In combination with a JAK/STAT pathway inhibitor (JAKi, Ruxolitinib) or with a direct inhibitor of the anti-apoptotic BCL2 protein (BCL2i, ABT-199) resistance of human and mouse ETP-ALL to LSD1i was reversed. This new combination approach efficiently inhibited the growth of human and mouse ETP-ALL cells in vivo by enhancing their differentiation and triggering an apoptotic response. These results set the stage for novel combination therapies to be used in clinical trials to treat ETP-ALL patients.


Assuntos
Inibidores de Janus Quinases , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Histona Desmetilases/metabolismo
7.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536646

RESUMO

Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.


Assuntos
Leucemia Mieloide Aguda , Animais , Diferenciação Celular/genética , Hematopoese , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Transdução de Sinais
8.
Autophagy ; 18(6): 1274-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34530675

RESUMO

Cancer cell growth is dependent upon the sustainability of proliferative signaling and resisting cell death. Macroautophagy/autophagy promotes cancer cell growth by providing nutrients to cells and preventing cell death. This is in contrast to autophagy promoting cell death under some conditions. The mechanism regulating autophagy-mediated cancer cell growth remains unclear. Herein, we demonstrate that TSSC4 (tumor suppressing subtransferable candidate 4) is a novel tumor suppressor that suppresses cancer cell growth and tumor growth and prevents cell death induction during excessive growth by inhibiting autophagy. The oncogenic proteins ERBB2 (erb-b2 receptor tyrosine kinase 2) and the activation EGFR mutant (EGFRvIII, epidermal growth factor receptor variant III) promote cell growth and TSSC4 expression in breast cancer and glioblastoma multiforme (GBM) cells, respectively. In EGFRvIII-expressing GBM cells, TSSC4 knockout shifted the function of autophagy from a pro-cell survival role to a pro-cell death role during prolonged cell growth. Furthermore, the interaction of TSSC4 with MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) via its conserved LC3-interacting region (LIR) contributes to its inhibition of autophagy. Finally, TSSC4 suppresses tumorsphere formation and tumor growth by inhibiting autophagy and maintaining cell survival in tumorspheres. Taken together, sustainable cancer cell growth can be achieved by autophagy inhibition via TSSC4 expression.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; CQ: chloroquine; EGFRvIII: epidermal growth factor receptor variant III; ERBB2: erb-b2 receptor tyrosine kinase 2; GBM: glioblastoma multiforme; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule Associated protein 1 light chain 3; TSSC4: tumor suppressing subtransferable candidate 4.


Assuntos
Autofagia , Glioblastoma , Transformação Celular Neoplásica , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Receptor ErbB-2 , Proteínas Supressoras de Tumor
9.
PLoS Biol ; 19(9): e3001394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550965

RESUMO

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus-based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Células da Medula Óssea/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
10.
Science ; 373(6562): 1537-1540, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554778

RESUMO

Cardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts. Transient, CM-specific expression of OSKM extends the regenerative window for postnatal mouse hearts and induces a gene expression program in adult CMs that resembles that of fetal CMs. Extended expression of OSKM in CMs leads to cellular reprogramming and heart tumor formation. Short-term OSKM expression before and during myocardial infarction ameliorates myocardial damage and improves cardiac function, demonstrating that temporally controlled dedifferentiation and reprogramming enable cell cycle reentry of mammalian CMs and facilitate heart regeneration.


Assuntos
Reprogramação Celular , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Actinas/genética , Actinas/metabolismo , Animais , Desdiferenciação Celular , Proliferação de Células , Doxiciclina/farmacologia , Expressão Gênica , Coração/embriologia , Neoplasias Cardíacas/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mitose , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
11.
Cell Rep ; 36(8): 109618, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433017

RESUMO

Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células da Medula Óssea/citologia , Movimento Celular/fisiologia , Células Cultivadas , Camundongos , Nicho de Células-Tronco/fisiologia , Transplante de Células-Tronco/métodos
12.
Front Microbiol ; 12: 665041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234758

RESUMO

An unprecedented amount of SARS-CoV-2 sequencing has been performed, however, novel bioinformatic tools to cope with and process these large datasets is needed. Here, we have devised a bioinformatic pipeline that inputs SARS-CoV-2 genome sequencing in FASTA/FASTQ format and outputs a single Variant Calling Format file that can be processed to obtain variant annotations and perform downstream population genetic testing. As proof of concept, we have analyzed over 229,000 SARS-CoV-2 viral sequences up until November 30, 2020. We have identified over 39,000 variants worldwide with increased polymorphisms, spanning the ORF3a gene as well as the 3' untranslated (UTR) regions, specifically in the conserved stem loop region of SARS-CoV-2 which is accumulating greater observed viral diversity relative to chance variation. Our analysis pipeline has also discovered the existence of SARS-CoV-2 hypermutation with low frequency (less than in 2% of genomes) likely arising through host immune responses and not due to sequencing errors. Among annotated non-sense variants with a population frequency over 1%, recurrent inactivation of the ORF8 gene was found. This was found to be present in the newly identified B.1.1.7 SARS-CoV-2 lineage that originated in the United Kingdom. Almost all VOC-containing genomes possess one stop codon in ORF8 gene (Q27∗), however, 13% of these genomes also contains another stop codon (K68∗), suggesting that ORF8 loss does not interfere with SARS-CoV-2 spread and may play a role in its increased virulence. We have developed this computational pipeline to assist researchers in the rapid analysis and characterization of SARS-CoV-2 variation.

13.
Nat Commun ; 12(1): 2622, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976180

RESUMO

Obesity is caused by an imbalance between food intake and energy expenditure (EE). Here we identify a conserved pathway that links signalling through peripheral Y1 receptors (Y1R) to the control of EE. Selective antagonism of peripheral Y1R, via the non-brain penetrable antagonist BIBO3304, leads to a significant reduction in body weight gain due to enhanced EE thereby reducing fat mass. Specifically thermogenesis in brown adipose tissue (BAT) due to elevated UCP1 is enhanced accompanied by extensive browning of white adipose tissue both in mice and humans. Importantly, selective ablation of Y1R from adipocytes protects against diet-induced obesity. Furthermore, peripheral specific Y1R antagonism also improves glucose homeostasis mainly driven by dynamic changes in Akt activity in BAT. Together, these data suggest that selective peripheral only Y1R antagonism via BIBO3304, or a functional analogue, could be developed as a safer and more effective treatment option to mitigate diet-induced obesity.


Assuntos
Arginina/análogos & derivados , Obesidade/prevenção & controle , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Termogênese/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Adulto , Animais , Arginina/farmacologia , Arginina/uso terapêutico , Biópsia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/metabolismo , Cultura Primária de Células , Receptores de Neuropeptídeo Y/metabolismo
14.
Nat Commun ; 12(1): 84, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398012

RESUMO

The disruption in blood supply due to myocardial infarction is a critical determinant for infarct size and subsequent deterioration in function. The identification of factors that enhance cardiac repair by the restoration of the vascular network is, therefore, of great significance. Here, we show that the transcription factor Zinc finger E-box-binding homeobox 2 (ZEB2) is increased in stressed cardiomyocytes and induces a cardioprotective cross-talk between cardiomyocytes and endothelial cells to enhance angiogenesis after ischemia. Single-cell sequencing indicates ZEB2 to be enriched in injured cardiomyocytes. Cardiomyocyte-specific deletion of ZEB2 results in impaired cardiac contractility and infarct healing post-myocardial infarction (post-MI), while cardiomyocyte-specific ZEB2 overexpression improves cardiomyocyte survival and cardiac function. We identified Thymosin ß4 (TMSB4) and Prothymosin α (PTMA) as main paracrine factors released from cardiomyocytes to stimulate angiogenesis by enhancing endothelial cell migration, and whose regulation is validated in our in vivo models. Therapeutic delivery of ZEB2 to cardiomyocytes in the infarcted heart induces the expression of TMSB4 and PTMA, which enhances angiogenesis and prevents cardiac dysfunction. These findings reveal ZEB2 as a beneficial factor during ischemic injury, which may hold promise for the identification of new therapies.


Assuntos
Isquemia/patologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Dependovirus/metabolismo , Regulação da Expressão Gênica , Humanos , Isquemia/genética , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Timosina/análogos & derivados , Timosina/genética , Timosina/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
15.
Stem Cell Reports ; 15(6): 1246-1259, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296673

RESUMO

Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general.


Assuntos
Loci Gênicos , Células-Tronco Embrionárias Humanas/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteínas Correpressoras/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos
16.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32503808

RESUMO

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Melanoma/patologia , Fatores de Transcrição/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Invasividade Neoplásica , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
17.
Blood ; 136(8): 957-973, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32369597

RESUMO

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Assuntos
Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Células HL-60 , Histona Desmetilases/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
18.
Dis Model Mech ; 13(3)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32005677

RESUMO

Cleft lip and palate are common birth defects resulting from failure of the facial processes to fuse during development. The mammalian grainyhead-like (Grhl1-3) genes play key roles in a number of tissue fusion processes including neurulation, epidermal wound healing and eyelid fusion. One family member, Grhl2, is expressed in the epithelial lining of the first pharyngeal arch in mice at embryonic day (E)10.5, prompting analysis of the role of this factor in palatogenesis. Grhl2-null mice die at E11.5 with neural tube defects and a cleft face phenotype, precluding analysis of palatal fusion at a later stage of development. However, in the first pharyngeal arch of Grhl2-null embryos, dysregulation of transcription factors that drive epithelial-mesenchymal transition (EMT) occurs. The aberrant expression of these genes is associated with a shift in RNA-splicing patterns that favours the generation of mesenchymal isoforms of numerous regulators. Driving the EMT perturbation is loss of expression of the EMT-suppressing transcription factors Ovol1 and Ovol2, which are direct GRHL2 targets. The expression of the miR-200 family of microRNAs, also GRHL2 targets, is similarly reduced, resulting in a 56-fold upregulation of Zeb1 expression, a major driver of mesenchymal cellular identity. The critical role of GRHL2 in mediating cleft palate in Zeb1-/- mice is evident, with rescue of both palatal and facial fusion seen in Grhl2-/-;Zeb1-/- embryos. These findings highlight the delicate balance between GRHL2/ZEB1 and epithelial/mesenchymal cellular identity that is essential for normal closure of the palate and face. Perturbation of this pathway may underlie cleft palate in some patients.


Assuntos
Embrião de Mamíferos/metabolismo , Palato/embriologia , Palato/metabolismo , Fatores de Transcrição/deficiência , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Região Branquial/embriologia , Caderinas/metabolismo , Cruzamentos Genéticos , Embrião de Mamíferos/ultraestrutura , Epiderme/embriologia , Epiderme/ultraestrutura , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Epitélio/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Maxila/embriologia , Maxila/patologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Tamanho do Órgão , Fenótipo , Gravidez , Splicing de RNA/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/deficiência
19.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121975

RESUMO

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Assuntos
Carcinoma , Microbiota , Animais , Carcinoma/metabolismo , Colo/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA