Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vasc Interv Radiol ; 35(6): 809-817.e1, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38219903

RESUMO

Traditionally, rodent cancer models have driven preclinical oncology research. However, they do not fully recapitulate characteristics of human cancers, and their size poses challenges when evaluating tools in the interventional oncologists' armamentarium. Pig models, however, have been the gold standard for validating surgical procedures. Their size enables the study of image-guided interventions using human ultrasound (US), computed tomography (CT), and magnetic resonance (MR) imaging platforms. Furthermore, pigs have immunologic features that are similar to those of humans, which can potentially be leveraged for studying immunotherapy. Novel pig models of cancer are being developed, but additional research is required to better understand both the pig immune system and malignancy to enhance the potential for pig models in interventional oncology research. This review aims to address the main advantages and disadvantages of using a pig model for interventional oncology and outline the specific characteristics of pig models that make them more suitable for investigation of locoregional therapies.


Assuntos
Modelos Animais de Doenças , Imunoterapia , Neoplasias , Animais , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Humanos , Suínos , Radiografia Intervencionista , Sus scrofa , Oncologia
2.
PLoS Negl Trop Dis ; 12(7): e0006608, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965969

RESUMO

BACKGROUND: The immune system depends on effector pathways to eliminate invading pathogens from the host in vivo. Macrophages (MΦ) of the innate immune system are armed with vitamin D-dependent antimicrobial responses to kill intracellular microbes. However, how the physiological levels of vitamin D during MΦ differentiation affect phenotype and function is unknown. METHODOLOGY/PRINCIPAL: The human innate immune system consists of divergent MΦ subsets that serve distinct functions in vivo. Both IL-15 and IL-10 induce MΦ differentiation, but IL-15 induces primary human monocytes to differentiate into antimicrobial MΦ (IL-15 MΦ) that robustly express the vitamin D pathway. However, how vitamin D status alters IL-15 MΦ phenotype and function is unknown. In this study, we found that adding 25-hydroxyvitamin D3 (25D3) during the IL-15 induced differentiation of monocytes into MΦ increased the expression of the antimicrobial peptide cathelicidin, including both CAMP mRNA and the encoded protein cathelicidin in a dose-dependent manner. The presence of physiological levels of 25D during differentiation of IL-15 MΦ led to a significant vitamin D-dependent antimicrobial response against intracellular Mycobacterium leprae but did not change the phenotype or phagocytic function of these MΦ. These data suggest that activation of the vitamin D pathway during IL-15 MΦ differentiation augments the antimicrobial response against M. leprae infection. CONCLUSIONS/SIGNIFICANCE: Our data demonstrates that the presence of vitamin D during MΦ differentiation bestows the capacity to mount an antimicrobial response against M. leprae.


Assuntos
Hanseníase/imunologia , Macrófagos/imunologia , Mycobacterium leprae/fisiologia , Vitamina D/imunologia , Diferenciação Celular , Humanos , Interleucina-10/imunologia , Interleucina-15/imunologia , Hanseníase/microbiologia , Macrófagos/citologia , Macrófagos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA