Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Ther ; 32(5): 1298-1310, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38459694

RESUMO

Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.


Assuntos
Sistemas CRISPR-Cas , Desoxirribonuclease I , Edição de Genes , Queratinócitos , Humanos , Edição de Genes/métodos , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética , Queratinócitos/metabolismo , Quebras de DNA de Cadeia Dupla , Aberrações Cromossômicas , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255836

RESUMO

Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).


Assuntos
Epidermólise Bolhosa Distrófica , Humanos , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Splicing de RNA , Pele , Íntrons , Precursores de RNA , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Colágeno Tipo VII/genética
3.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681509

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/etiologia , Células Endoteliais/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/complicações , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias Cutâneas/patologia
4.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982270

RESUMO

Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of Streptococcus pyogenes we fused the coding sequence of GFP to COL17A1 leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes. We confirmed the accurate full-length expression and localization of GFP-C17 to the plasma membrane via fluorescence microscopy and Western blot analysis. As expected, the expression of GFP-C17mut fusion proteins in JEB keratinocytes generated no specific GFP signal. However, the CRISPR/Cas9-mediated repair of a JEB-associated frameshift mutation in GFP-COL17A1mut-expressing JEB cells led to the restoration of GFP-C17, apparent in the full-length expression of the fusion protein, its accurate localization within the plasma membrane of keratinocyte monolayers as well as within the basement membrane zone of 3D-skin equivalents. Thus, this fluorescence-based JEB cell line provides the potential to serve as a platform to screen for personalized gene editing molecules and applications in vitro and in appropriate animal models in vivo.


Assuntos
Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Animais , Humanos , Epidermólise Bolhosa Juncional/genética , Edição de Genes , Pele , Mutação , Queratinócitos , Epidermólise Bolhosa/genética
5.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901775

RESUMO

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Humanos , Trans-Splicing , Pele/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa/genética , Queratinócitos/metabolismo , Colágeno Tipo VII/genética , Mutação
6.
Front Med (Lausanne) ; 9: 976604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091706

RESUMO

Background: Epidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB). Methods: In this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene. Results: As analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents. Conclusion: Here we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.

7.
Mol Ther ; 30(8): 2680-2692, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35490295

RESUMO

Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6ß4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.


Assuntos
Autoantígenos , Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Colágenos não Fibrilares , Autoantígenos/genética , Desoxirribonuclease I/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/terapia , Homozigoto , Humanos , Laminina/genética , Mutação , Colágenos não Fibrilares/genética , Deleção de Sequência , Colágeno Tipo XVII
8.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163654

RESUMO

Mutations within the COL7A1 gene underlie the inherited recessive subtype of the blistering skin disease dystrophic epidermolysis bullosa (RDEB). Although gene replacement approaches for genodermatoses are clinically advanced, their implementation for RDEB is challenging and requires endogenous regulation of transgene expression. Thus, we are using spliceosome-mediated RNA trans-splicing (SMaRT) to repair mutations in COL7A1 at the mRNA level. Here, we demonstrate the capability of a COL7A1-specific RNA trans-splicing molecule (RTM), initially selected using a fluorescence-based screening procedure, to accurately replace COL7A1 exons 1 to 64 in an endogenous setting. Retroviral RTM transduction into patient-derived, immortalized keratinocytes resulted in an increase in wild-type transcript and protein levels, respectively. Furthermore, we revealed accurate deposition of recovered type VII collagen protein within the basement membrane zone of expanded skin equivalents using immunofluorescence staining. In summary, we showed for the first time the potential of endogenous 5' trans-splicing to correct pathogenic mutations within the COL7A1 gene. Therefore, we consider 5' RNA trans-splicing a suitable tool to beneficially modulate the RDEB-phenotype, thus targeting an urgent need of this patient population.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa/genética , RNA/metabolismo , Humanos , Splicing de RNA , Trans-Splicing
9.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Ther Nucleic Acids ; 25: 237-250, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458008

RESUMO

Gene editing via homology-directed repair (HDR) currently comprises the best strategy to obtain perfect corrections for pathogenic mutations of monogenic diseases, such as the severe recessive dystrophic form of the blistering skin disease epidermolysis bullosa (RDEB). Limitations of this strategy, in particular low efficiencies and off-target effects, hinder progress toward clinical applications. However, the severity of RDEB necessitates the development of efficient and safe gene-editing therapies based on perfect repair. To this end, we sought to assess the corrective efficiencies following optimal Cas9 nuclease and nickase-based COL7A1-targeting strategies in combination with single- or double-stranded donor templates for HDR at the COL7A1 mutation site. We achieved HDR-mediated correction efficiencies of up to 21% and 10% in primary RDEB keratinocytes and fibroblasts, respectively, as analyzed by next-generation sequencing, leading to full-length type VII collagen restoration and accurate deposition within engineered three-dimensional (3D) skin equivalents (SEs). Extensive on- and off-target analyses confirmed that the combined treatment of paired nicking and single-stranded oligonucleotides constituted a highly efficient COL7A1-editing strategy, associated with a significantly improved safety profile. Our findings, therefore, represent a further advancement in the field of traceless genome editing for genodermatoses.

11.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804860

RESUMO

The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter, spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in post-mortem human brain samples. The proteins translated from the CNS and reference transcripts differ only at their N-terminal regions. To dissect functional differences between CNS-specific isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by RNA sequencing. Compared to controls, more differentially expressed genes were observed after activation of the CNS than the reference gene promoter, while the magnitude of alternative exon usage was comparable between activation of the two promoters. Promoter-selective associations were observed with canonical signaling pathways, mitochondrial and nervous system functions and neurological diseases. The distinct N-terminal as well as the shared downstream regions of PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes of amyotrophic lateral sclerosis and Parkinson's disease were noted with differentially expressed genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus, CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific isoforms and reference proteins have common, complementary and selective functions relevant for neurodegenerative diseases.


Assuntos
Redes Reguladoras de Genes , Doenças Neurodegenerativas/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Linhagem Celular Tumoral , Éxons , Células HEK293 , Humanos , Neurônios/metabolismo , Motivos de Nucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcriptoma
12.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805154

RESUMO

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa Juncional/genética , Colágenos não Fibrilares/metabolismo , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Processamento Alternativo , Biópsia , Linhagem Celular , Sobrevivência Celular , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/terapia , Éxons , Genótipo , Homozigoto , Humanos , Queratinócitos/citologia , Lipossomos/química , Mutação , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Colágeno Tipo XVII
13.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
14.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276641

RESUMO

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
15.
J Invest Dermatol ; 140(10): 1985-1993.e5, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32142798

RESUMO

End-joining‒based gene editing is frequently used for efficient reframing and knockout of target genes. However, the associated random, unpredictable, and often heterogeneous repair outcomes limit its applicability for therapeutic approaches. This study revealed more precise and predictable outcomes simply on the basis of the sequence context at the CRISPR/Cas9 target site. The severe dystrophic form of the blistering skin disease epidermolysis bullosa (DEB) represents a suitable model platform to test these recent developments for the disruption and reframing of dominant and recessive alleles, respectively, both frequently seen in DEB. We delivered a CRISPR/Cas9 nuclease as ribonucleoprotein into primary wild-type and recessive DEB keratinocytes to introduce a precise predictable single adenine sense-strand insertion at the target site. We achieved type VII collagen knockout in more than 40% of ribonucleoprotein-treated primary wild-type keratinocytes and type VII collagen restoration in more than 70% of ribonucleoprotein-treated recessive DEB keratinocytes. Next-generation sequencing of the on-target site revealed the presence of the precise adenine insertion upstream of the pathogenic mutation in at least 17% of all analyzed COL7A1 alleles. This demonstrates that COL7A1 editing based on precise end-joining‒mediated DNA repair is an efficient strategy to revert the disease-associated nature of DEB regardless of the mutational inheritance.


Assuntos
Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Edição de Genes , Células Cultivadas , Reparo do DNA por Junção de Extremidades , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Queratinócitos/metabolismo , Mutação , Ribonucleoproteínas/farmacologia
16.
Mol Ther Nucleic Acids ; 18: 496-507, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31670199

RESUMO

Current gene-editing approaches for treatment of recessive dystrophic epidermolysis bullosa (RDEB), an inherited, severe form of blistering skin disease, suffer from low efficiencies and safety concerns that complicate implementation in clinical settings. We present a strategy for efficient and precise repair of RDEB-associated mutations in the COL7A1 gene. We compared the efficacy of double-strand breaks (induced by CRISPR/Cas9), single nicks, or double nicks (induced by Cas9n) in mediating repair of a COL7A1 splice-site mutation in exon 3 by homologous recombination (HR). We accomplished remarkably high HR frequencies of 89% with double nicking while at the same time keeping unwanted repair outcomes, such as non-homologous end joining (NHEJ), at a minimum (11%). We also investigated the effects of subtle differences in repair template design on HR rates and found that strategic template-nicking can enhance COL7A1-editing efficiency. In RDEB patient keratinocytes, application of double-nicking led to restoration and subsequent secretion of type VII collagen at high efficiency. Comprehensive analysis of 25 putative off-target sites revealed no off-target activity for double-nicking, while usage of Cas9 resulted in 54% modified alleles at one site. Taken together, our work provides a framework for efficient, precise, and safe repair of COL7A1, which lies at the heart of a future curative therapy of RDEB.

17.
J Invest Dermatol ; 139(8): 1699-1710.e6, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998984

RESUMO

Epidermolytic ichthyosis is a skin fragility disorder caused by dominant-negative mutations in KRT1 or KRT10. No definitive restorative therapies exist that target these genetic faults. Gene editing can be used to efficiently introduce frameshift mutations to inactivate mutant genes. This can be applied to counter the effect of dominantly inherited diseases such as epidermolytic ichthyosis. In this study, we used transcription activator-like effector nuclease technology, to disrupt disease-causing mutant KRT10 alleles in an ex vivo cellular approach, with the intent of developing a therapy for patients with epidermolytic ichthyosis. A transcription activator-like effector nuclease was designed to specifically target a region of KRT10, upstream of a premature termination codon known to induce a genetic knockout. This proved highly efficient at gene disruption in a patient-derived keratinocyte cell line. In addition, analysis for off-target effects indicated no promiscuous gene editing-mediated disruption. Reversion of the keratin intermediate filament fragility phenotype associated with epidermolytic ichthyosis was observed by the immunofluorescence analysis of correctly gene-edited single-cell clones. This was in concurrence with immunofluorescence and ultrastructure analysis of murine xenograft models. The efficiency of this approach was subsequently confirmed in primary patient keratinocytes. Our data demonstrate the feasibility of an ex vivo gene-editing therapy for more than 95.6% of dominant KRT10 mutations.


Assuntos
Edição de Genes/métodos , Hiperceratose Epidermolítica/terapia , Filamentos Intermediários/metabolismo , Queratina-10/genética , Pele/patologia , Alelos , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Éxons/genética , Estudos de Viabilidade , Feminino , Terapia Genética/métodos , Humanos , Hiperceratose Epidermolítica/genética , Hiperceratose Epidermolítica/patologia , Queratina-10/metabolismo , Queratinócitos/patologia , Queratinócitos/transplante , Masculino , Camundongos , Mutação , Cultura Primária de Células , Estabilidade Proteica , Pele/citologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
18.
Matrix Biol Plus ; 4: 100017, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33543014

RESUMO

High conservation of extracellular matrix proteins often makes the generation of potent species-specific antibodies challenging. For collagen VII there is a particular preclinical interest in the ability to discriminate between human and murine collagen VII. Deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB) - a genetic skin blistering disease, which in its most severe forms is highly debilitating. Advances in gene and cell therapy approaches have made curative therapies for genetic diseases a realistic possibility. DEB is one disorder for which substantial progress has been made toward curative therapies and improved management of the disease. However, to increase their efficacy further preclinical studies are needed. The early neonatal lethality of complete collagen VII deficient mice, have led researches to resort to using models maintaining residual collagen VII expression or grafting of DEB model skin on wild-type mice for preclinical therapy studies. These approaches are challenged by collagen VII expression by the murine host. Thus, the ability to selectively visualize human and murine collagen VII would be a substantial advantage. Here, we describe a novel resource toward this end. By immunization with homologous peptides we generated rabbit polyclonal antibodies that recognize either human or murine collagen VII. Testing on additional species, including rat, sheep, dog, and pig, combined sequence alignment and peptide competition binding assays enabled identification of the major antisera recognizing epitopes. The species-specificity was maintained after denaturation and the antibodies allowed us to simultaneously, specifically visualize human and murine collagen VII in situ.

19.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518954

RESUMO

In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.


Assuntos
Regulação da Expressão Gênica , Oligonucleotídeos Antissenso , Interferência de RNA , Splicing de RNA , Trans-Splicing , Linhagem Celular , Edição de Genes , Genes Reporter , Humanos , Sítios de Splice de RNA
20.
PLoS One ; 12(12): e0189324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29228025

RESUMO

Primordial growth failure has been linked to defects in the biology of cell division and replication. The complex processes involved in microtubule spindle formation, organization and function have emerged as a dominant patho-mechanism in these conditions. The majority of reported disease genes encode for centrosome and centriole proteins, leaving kinetochore proteins by which the spindle apparatus interacts with the chromosomes largely unaccounted for. We report a novel disease gene encoding the constitutive inner kinetochore member CENPT, which is involved in kinetochore targeting and assembly, resulting in severe growth failure in two siblings of a consanguineous family. We herein present studies on the molecular and cellular mechanisms that explain how genetic mutations in this gene lead to primordial growth failure. In both, affected human cell lines and a zebrafish knock-down model of Cenpt, we observed aberrations in cell division with abnormal accumulation of micronuclei and of nuclei with increased DNA content arising from incomplete and/or irregular chromosomal segregation. Our studies underscore the critical importance of kinetochore function for overall body growth and provide new insight into the cellular mechanisms implicated in the spectrum of these severe growth disorders.


Assuntos
Proteínas Cromossômicas não Histona/genética , Transtornos do Crescimento/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Animais , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA