Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766019

RESUMO

The efficient computation of viewpoints for solving vision tasks comprising multi-features (regions of interest) represents a common challenge that any robot vision system (RVS) using range sensors faces. The characterization of valid and robust viewpoints is even more complex within real applications that require the consideration of various system constraints and model uncertainties. Hence, to address some of the challenges, our previous work outlined the computation of valid viewpoints as a geometrical problem and proposed feature-based constrained spaces (C-spaces) to tackle this problem efficiently for acquiring one feature. The present paper extends the concept of C-spaces to consider multi-feature problems using feature cluster constrained spaces (GC-spaces). A GC-space represents a closed-form, geometrical solution that provides an infinite set of valid viewpoints for acquiring a cluster of features satisfying diverse viewpoint constraints. Furthermore, the current study outlines a generic viewpoint planning strategy based on GC-spaces for solving vision tasks comprising multi-feature scenarios effectively and efficiently. The applicability of the proposed framework is validated on two different industrial vision systems used for dimensional metrology tasks.

2.
Sensors (Basel) ; 21(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640958

RESUMO

Digital twins of measurement systems are used to estimate their measurement uncertainty. In the past, virtual coordinate measuring machines have been extensively researched. Research on digital twins of optical systems is still lacking due to the high number of error contributors. A method to describe a digital twin of an optical measurement system is presented in this article. The discussed optical system is a laser line scanner mounted on a coordinate measuring machine. Each component of the measurement system is mathematically described. The coordinate measuring machine focuses on the hardware errors and the laser line scanner determines the measurement error based on the scan depth, in-plane angle and out-of-plane angle. The digital twin assumes stable measurement conditions and uniform surface characteristics. Based on the Monte Carlo principle, virtual measurements can be used to determine the measurement uncertainty. This is demonstrated by validating the digital twin on a set of calibrated ring gauges. Two validation tests are performed: the first verifies the virtual uncertainty estimation by comparison with experimental data. The second validates the measured diameter of different ring gauges by comparing the estimated confidence interval with the calibrated diameter.

3.
MethodsX ; 7: 101122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33318953

RESUMO

Surface topography measurements are vital in industrial quality control. Linear roughness measurements are among the most preferred methods, being quick to perform and easy to interpret. The ISO 16610 standard series prescribes filters that can be used for most cases, but has limitations for restricted measurement lengths. This is because the standard filter type is a Gaussian filter, which like most instances of kernel convolution filters has no output near the edges of the profile, effectively shortening the length of the filtered output profile as compared to the input. In some cases, this leads to a lack of representative data after filtration. Especially in fields such as Additive Manufacturing (AM) this becomes a problem, due to the high "roughness to measurable data length"-ratio that characterizes complex AM parts. This paper describes a method that allows to overcome this limitation:•A method for circular padding of short measured tracks is described and validated.•A flexible profile data post-processing tool was developed in MATLAB to grant users more control over the data analysis. Results obtained from roughness profiles long enough for normal ISO procedures are shown to not change significantly when circularly padded. When only a shorter section of the data is available, where the standard protocol would not be able to compute a filtered profile and related parameters anymore, the circular padding method is shown to lead to results that are in good agreement with the ISO standard procedures.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(9): OMI1-OMI2, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902440

RESUMO

Optical measurement and characterization are two of the pillars of metrology. The ability to measure precisely with high dynamic range and accuracy betters our understanding of nature and the universe. In this feature issue, we present a collection of articles that delves into the fundamental techniques used to advance the field.

5.
Sensors (Basel) ; 20(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973080

RESUMO

Displacement measuring sensors play an essential role in all aspects of dimensional metrology. They can be used for direct displacement measurements but more often they are part of a measurement system, such as an atomic force microscope, roughness tester or a coordinate measuring machine (CMM). In order to achieve traceable measurements that can be related to the meter, these sensors must be calibrated against a reference standard that is more noise- and error-free than the sensor under test. A description of the various methods to achieve the ultimate traceability, repeatability and accuracy of such a calibration system is the main part of this paper. Various interferometric methods will be reviewed including several methods that use directly a primary standard as a reference: either an iodine-stabilized laser or a frequency comb. It is shown that various methods exist to quantify or mitigate the periodic errors that are inherent to interferometric methods. Also it is shown that knowledge of this periodicity may lead to a separation of periodic and non-periodic non-linearity errors of both the calibration instrument as the sensor under test. This review is limited to small-range sensors, typically with a range <100 µm. It is concluded that today's technology enables sound and traceable sensor calibration up to the sub-nano and even picometer level of uncertainties.

6.
Sensors (Basel) ; 19(19)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546748

RESUMO

Displacement laser interferometer systems are widely used for the calibration of machine tools and CMMs (Coordinate Measuring Machines). Additionally, they are often the workhorse in dimensional calibration laboratories, where they act as the basic metrological traceability link for many calibrations. This paper gives a review of the calibration of such systems, where several approaches, such as the calibrations of separate components or the system as a whole, are reviewed. The calibrations discussed are: the laser frequency, the counting system, software evaluation of the environmental conditions, environmental and material temperature sensor calibration and the calibration of optics that is part of the system. For these calibrations considerations are given about the ways these can be carried out and about establishing the re-calibration intervals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA