Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 71, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101299

RESUMO

BACKGROUND: Medium-chain fatty acids are molecules with applications in different industries and with growing demand. However, the current methods for their extraction are not environmentally sustainable. The reverse ß-oxidation pathway is an energy-efficient pathway that produces medium-chain fatty acids in microorganisms, and its use in Saccharomyces cerevisiae, a broadly used industrial microorganism, is desired. However, the application of this pathway in this organism has so far either led to low titers or to the predominant production of short-chain fatty acids. RESULTS: We genetically engineered Saccharomyces cerevisiae to produce the medium-chain fatty acids hexanoic and octanoic acid using novel variants of the reverse ß-oxidation pathway. We first knocked out glycerolphosphate dehydrogenase GPD2 in an alcohol dehydrogenases knock-out strain (△adh1-5) to increase the NADH availability for the pathway, which significantly increased the production of butyric acid (78 mg/L) and hexanoic acid (2 mg/L) when the pathway was expressed from a plasmid with BktB as thiolase. Then, we tested different enzymes for the subsequent pathway reactions: the 3-hydroxyacyl-CoA dehydrogenase PaaH1 increased hexanoic acid production to 33 mg/L, and the expression of enoyl-CoA hydratases Crt2 or Ech was critical to producing octanoic acid, reaching titers of 40 mg/L in both cases. In all cases, Ter from Treponema denticola was the preferred trans-enoyl-CoA reductase. The titers of hexanoic acid and octanoic acid were further increased to almost 75 mg/L and 60 mg/L, respectively, when the pathway expression cassette was integrated into the genome and the fermentation was performed in a highly buffered YPD medium. We also co-expressed a butyryl-CoA pathway variant to increase the butyryl-CoA pool and support the chain extension. However, this mainly increased the titers of butyric acid and only slightly increased that of hexanoic acid. Finally, we also tested the deletion of two potential medium-chain acyl-CoA depleting reactions catalyzed by the thioesterase Tes1 and the medium-chain fatty acyl CoA synthase Faa2. However, their deletion did not affect the production titers. CONCLUSIONS: By engineering the NADH metabolism and testing different reverse ß-oxidation pathway variants, we extended the product spectrum and obtained the highest titers of octanoic acid and hexanoic acid reported in S. cerevisiae. Product toxicity and enzyme specificity must be addressed for the industrial application of the pathway in this organism.

2.
J Ind Microbiol Biotechnol ; 48(7-8)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34323925

RESUMO

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by fungi of the Ustilaginaceae family in the presence of hydrophobic carbon sources like plant oils. In the present study, we investigated the structural composition of MELs produced from castor oil using seven different microorganisms and compared them to MEL structures resulting from other plant oils. Castor oil is an industrially relevant plant oil that presents as an alternative to currently employed edible plant oils like rapeseed or soybean oil. The main fatty acid in castor oil is the mono-hydroxylated ricinoleic acid, providing the possibility to produce novel MEL structures with interesting features. Analysis of the produced MELs from castor oil by different chromatographic and mass spectrometry techniques revealed that all seven microorganisms were generally able to integrate hydroxylated fatty acids into the MEL molecule, although at varying degrees. These novel MELs containing a hydroxy fatty acid (4-O-[2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-4'/6'-O-acetyl-ß-D-mannopyranosyl]-erythritol) were more hydrophilic than conventional MEL and therefore showed a different elution behavior in chromatography. Large shares of novel hydroxy MELs (around 50% of total MELs) were found for the two MEL-B/C producing species Ustilago siamensis and Ustilago shanxiensis, but also for the MEL-A/B/C producer Moesziomyces aphidis (around 25%). In addition, tri-acylated hydroxylated MELs with a third long-chain fatty acid esterified to the free hydroxyl group of the hydroxy fatty acid were identified for some species. Overall, production of MEL from castor oil with the investigated organisms provided a complex mixture of various novel MEL structures that can be exploited for further research.


Assuntos
Óleo de Rícino , Tensoativos , Basidiomycota , Glicolipídeos
3.
J Ind Microbiol Biotechnol ; 46(8): 1191-1204, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175524

RESUMO

Mannosylerythritol lipids (MEL) are microbial glycolipid biosurfactants with great potential for application in cosmetics and household detergents. In current biotechnological processes, they are produced by basidiomycetous fungi, the Ustilaginaceae, as a complex mixture of different chemical structures. It was the aim of this paper to study the influence of producer organisms and substrates on the resulting MEL structures with a novel high-resolution HPTLC-MALDI-TOF method. Given the seven different microbes and four plant oils, our analysis revealed that the product concentrations varied strongly between organisms, while they were similar for the different substrates. Coconut oil presented an exception, since only one organism was able to synthesize MEL from this substrate in considerable yields. Analysis by GC-FID further showed that the chain length pattern of hydrophobic fatty acid side-chains was very specific for individual organisms, while substrates had only a minor influence on the chain length. Our novel HPTLC-MALDI-TOF combination method finally demonstrated the presence of multiple MEL sub-variants with differing acetylation and fatty acid chain lengths. It also revealed the production of a more hydrophilic biosurfactant mannosylmannitol lipid (MML) as a side-product in certain fungi. Overall, it was concluded that the pattern of produced biosurfactant structures are mainly governed by producer organisms rather than substrates.


Assuntos
Cromatografia em Camada Fina/métodos , Glicolipídeos/química , Glicolipídeos/metabolismo , Óleos de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ustilaginales/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Óleos de Plantas/química , Tensoativos/química , Tensoativos/metabolismo , Ustilaginales/genética
4.
Front Chem ; 6: 421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271772

RESUMO

Lignocellulose can be converted sustainably to fuels, power and value-added chemicals like fatty acid esters. This study presents a concept for the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters based on lignocellulosic biomass. To achieve this, beech wood cellulose fiber hydrolysate was applied in three manners: as sugar component, as part of the deep eutectic solvent (DES) reaction system and as carbon source for the microbial production of the fatty acid component. These fatty acids were gained from single cell oil produced by the oleaginous yeast Cryptococcus curvatus cultivated with cellulose fiber hydrolysate as carbon source. Afterwards, an immobilized Candida antarctica lipase B was used as the biocatalyst in DES to esterify sugars with fatty acids. Properties of the DES were determined and synthesized sugar mono- and di-esters were identified and characterized using TLC, MS, and NMR. Using this approach, sugar esters were successfully synthesized which are 100% based on lignocellulosic biomass.

5.
Appl Biochem Biotechnol ; 185(1): 13-33, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29071459

RESUMO

The chemo-enzymatic epoxidation of Lallemantia iberica seed oil (LISO), a novel plant oil characterized by its exceptional high content of alpha-linolenic acid (> 60%), was developed using an immobilized lipase from Pseudozyma antarctica and hydrogen peroxide as oxidant. A statistical approach was used to study the effect of enzyme amount, temperature, time, and solvent amount on the oxirane oxygen content obtained during epoxidation. An oxirane oxygen content of 8.6 ± 0.2% corresponding to a yield of 82% was obtained under optimized conditions that were identified to be at an enzyme load of 8.2 g/mol of double bonds, a solvent amount of 56.4 wt.%, a temperature of 33 °C, and an incubation time of 17 h. In addition, the experimental investigation was combined with a techno-economic and ecological assessment gaining detailed information regarding cost structure and environmental impact for the chemo-enzymatic epoxidation of the novel plant oil.


Assuntos
Proteínas Fúngicas/química , Lamiaceae/química , Lipase/química , Óleos de Plantas/química , Sementes/química , Ustilaginales/enzimologia , Peróxido de Hidrogênio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA