Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 79: 102466, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525135

RESUMO

Diagnostic disagreements among pathologists occur throughout the spectrum of benign to malignant lesions. A computer-aided diagnostic system capable of reducing uncertainties would have important clinical impact. To develop a computer-aided diagnosis method for classifying breast biopsy images into a range of diagnostic categories (benign, atypia, ductal carcinoma in situ, and invasive breast cancer), we introduce a transformer-based hollistic attention network called HATNet. Unlike state-of-the-art histopathological image classification systems that use a two pronged approach, i.e., they first learn local representations using a multi-instance learning framework and then combine these local representations to produce image-level decisions, HATNet streamlines the histopathological image classification pipeline and shows how to learn representations from gigapixel size images end-to-end. HATNet extends the bag-of-words approach and uses self-attention to encode global information, allowing it to learn representations from clinically relevant tissue structures without any explicit supervision. It outperforms the previous best network Y-Net, which uses supervision in the form of tissue-level segmentation masks, by 8%. Importantly, our analysis reveals that HATNet learns representations from clinically relevant structures, and it matches the classification accuracy of 87 U.S. pathologists for this challenging test set.


Assuntos
Neoplasias da Mama , Mama , Biópsia , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos
2.
IEEE Trans Pattern Anal Mach Intell ; 44(5): 2416-2425, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264092

RESUMO

We introduce a novel and generic convolutional unit, DiCE unit, that is built using dimension-wise convolutions and dimension-wise fusion. The dimension-wise convolutions apply light-weight convolutional filtering across each dimension of the input tensor while dimension-wise fusion efficiently combines these dimension-wise representations; allowing the DiCE unit to efficiently encode spatial and channel-wise information contained in the input tensor. The DiCE unit is simple and can be seamlessly integrated with any architecture to improve its efficiency and performance. Compared to depth-wise separable convolutions, the DiCE unit shows significant improvements across different architectures. When DiCE units are stacked to build the DiCENet model, we observe significant improvements over state-of-the-art models across various computer vision tasks including image classification, object detection, and semantic segmentation. On the ImageNet dataset, the DiCENet delivers 2-4 percent higher accuracy than state-of-the-art manually designed models (e.g., MobileNetv2 and ShuffleNetv2). Also, DiCENet generalizes better to tasks (e.g., object detection) that are often used in resource-constrained devices in comparison to state-of-the-art separable convolution-based efficient networks, including neural search-based methods (e.g., MobileNetv3 and MixNet).


Assuntos
Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA