Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spine J ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688331

RESUMO

BACKGROUND CONTEXT: Following total sacrectomy, lumbopelvic reconstruction is essential to restore continuity between the lumbar spine and pelvis. However, to achieve long-term clinical stability, bony fusion between the lumbar spine and the pelvic ring is crucial. Reduction of the lumbopelvic distance can promote successful bony fusion. Although many lumbopelvic reconstruction techniques (LPRTs) have been previously analyzed, the biomechanical effect of lumbopelvic distance reduction (LPDR) has not been investigated yet. PURPOSE: To evaluate and compare the biomechanical characteristics of four different LPRTs while considering the effect of LPDR. STUDY DESIGN/SETTING: A comparative finite element (FE) study. METHODS: The FE models following total sacrectomy were developed to analyze four different LPRTs, with and without LPDR. The closed-loop reconstruction (CLR), the sacral-rod reconstruction (SRR), the four-rod reconstruction (FRR), and the improved compound reconstruction (ICR) techniques were analyzed in flexion, extension, lateral bending, and axial rotation. Lumbopelvic stability was assessed through the shift-down displacement and the relative sagittal rotation of L5, while implant safety was evaluated based on the stress state at the bone-implant interface and within the rods. RESULTS: Regardless of LPDR, both the shift-down displacement and relative sagittal rotation of L5 consistently ranked the LPRTs as ICR

2.
Spine J ; 24(7): 1323-1333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38307174

RESUMO

BACKGROUND CONTEXT: Oblique lumbar interbody fusion (OLIF) can provide an ideal minimally invasive solution for achieving spinal fusion in an older, more frail population where decreased bone quality can be a limiting factor. Stabilization can be achieved with bilateral pedicle screws (BPS), which require additional incisions and longer operative time. Alternatively, a novel self-anchoring stand-alone lateral plate system (SSA) can be used, where no additional incisions are required. Based on the relevant literature, BPS constructs provide greater primary biomechanical stability compared to lateral plate constructs, including SSA. This difference is further increased by osteoporosis. Screw augmentation in spinal fusion surgeries is commonly used; however, in the case of OLIF, it is a fairly new concept, lacking a consensus-based guideline. PURPOSE: This comparative finite element (FE) study aimed to investigate the effect of PMMA screw augmentation on the primary stability of a stand-alone implant construct versus posterior stabilization in OLIF with osteoporotic bone quality. STUDY DESIGN: The biomechanical effect of screw augmentation was studied inside an in-silico environment using computer-aided FE analysis. METHODS: A previously validated and published L2-L4 FE model with normal and osteoporotic bone material properties was used. Geometries based on the OLIF implants (BPS, SSA) were created and placed inside the L3-L4 motion segment with increasing volumes (1-6 cm3) of PMMA augmentation. A follower load of 400 N and 10 Nm bending moment (in the three anatomical planes) were applied to the surgical FE models with different bone material properties. The operated L3-L4 segmental range of motion (ROM), the inserted cage's maximal caudal displacements, and L4 cranial bony endplate principal stress values were measured. RESULTS: The nonaugmented values for the BPS construct were generally lower compared to SSA, and the difference was increased by osteoporosis. In osteoporotic bone, PMMA augmentation gradually decreased the investigated parameters and the difference between the two constructs as well. Between 3 cm3 and 4 cm3 of injected PMMA volume per screw, the difference between augmented SSA and standard BPS became comparable. CONCLUSIONS: Based on this study, augmentation can enhance the primary stability of the constructs and decrease the difference between them. Considering leakage as a possible complication, between 3 cm3 and 4 cm3 of injected PMMA per screw can be an adequate amount for SSA augmentation. However, further in silico, and possibly in vitro and clinical testing is required to thoroughly understand the investigated biomechanical aspects. CLINICAL SIGNIFICANCE: This study sheds light on the possible biomechanical advantage offered by augmented OLIF implants and provides a theoretical augmentation amount for the SSA construct. Based on the findings, the concept of an SSA device with PMMA augmentation capability is desirable.


Assuntos
Análise de Elementos Finitos , Vértebras Lombares , Osteoporose , Parafusos Pediculares , Polimetil Metacrilato , Fusão Vertebral , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Humanos , Vértebras Lombares/cirurgia , Osteoporose/cirurgia , Fenômenos Biomecânicos , Cimentos Ósseos
3.
Injury ; 54(12): 111162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945416

RESUMO

OBJECTIVE: To evaluate and compare the biomechanical efficacy of six iliosacral screw fixation techniques for treating unilateral AO Type B2 (Denis Type II) sacral fractures using literature-based and QCT-based bone material properties in finite element (FE) models. METHODS: Two FE models of the intact pelvis were constructed: the literature-based model (LBM) with bone material properties taken from the literature, and the patient-specific model (PSM) with QCT-derived bone material properties. Unilateral transforaminal sacral fracture was modelled to assess different fixation techniques: iliosacral screw (ISS) at the first sacral vertebra (S1) (ISS1), ISS at the second sacral vertebra (S2) (ISS2), ISS at S1 and S2 (ISS12), transverse iliosacral screws (TISS) at S1 (TISS1), TISS at S2 (TISS2), and TISS at S1 and S2 (TISS12). A 600 N vertical load with both acetabula fixed was applied. Vertical stiffness (VS), relative interfragmentary displacement (RID), and the von Mises stress values in the screws and fracture interface were analysed. RESULTS: The lowest and highest normalised VS was given by ISS1 and TISS12 techniques for LBM and PSM, with 137 % and 149 %, and 375 % and 472 %, respectively. In comparison with the LBM, the patient-specific bone modelling increased the maximum screw stress values by 19.3, 16.3, 27.8, 2.3, 24.4 and 7.8 % for ISS1, ISS2, ISS12, TISS1, TISS2 and TISS12, respectively. The maximum RID values were between 0.10 mm and 0.47 mm for all fixation techniques in both models. The maximum von Mises stress results on the fracture interface show a substantial difference between the two models, as PSM (mean ± SD of 15.76 ± 8.26 MPa) gave lower stress values for all fixation techniques than LBM (mean ± SD of 28.95 ± 6.91 MPa). CONCLUSION: The differences in stress distribution underline the importance of considering locally defined bone material properties when investigating internal mechanical parameters. Based on the results, all techniques demonstrated clinically sufficient stability, with TISS12 being superior from a biomechanical standpoint. Both LBM and PSM models indicated a consistent trend in ranking the fixation techniques based on stability. However, long-term clinical trials are recommended to confirm the findings of the study.


Assuntos
Fraturas Ósseas , Fraturas da Coluna Vertebral , Humanos , Sacro/diagnóstico por imagem , Sacro/cirurgia , Sacro/lesões , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fraturas Ósseas/cirurgia , Fenômenos Biomecânicos
4.
Sci Rep ; 12(1): 20382, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437349

RESUMO

Standing radiographs play an important role in the characterization of spinal sagittal alignment, as they depict the spine under physiologic loading conditions. However, there is no commonly available method to apply the lumbar lordosis of standing radiographs to supine CT-based virtual 3D models of the lumbar spine. We aimed to develop a method for the sagittal rigid-body registration of vertebrae to standing radiographs, using the exact geometry reconstructed from CT-data. In a cohort of 50 patients with monosegmental spinal degeneration, segmentation and registration of the lumbar vertebrae and sacrum were performed by two independent investigators. Intersegmental angles and lumbar lordosis were measured both in CT scans and radiographs. Vertebrae were registered using the X-ray module of Materialise Mimics software. Postregistrational midsagittal sections were constructed of the sagittal midplane sections of the registered 3D lumbar spine geometries. Mean Hausdorff distance was measured between corresponding registered vertebral geometries. The registration process minimized the difference between the X-rays' and postregistrational midsagittal sections' lordoses. Intra- and inter-rater reliability was excellent based on angle and mean Hausdorff distance measurements. We propose an accessible, accurate, and reproducible method for creating patient-specific 3D geometries of the lumbar spine that accurately represent spinal sagittal alignment in the standing position.


Assuntos
Lordose , Humanos , Lordose/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Posição Ortostática , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
5.
Front Surg ; 8: 662919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124135

RESUMO

Introduction: The number of patients with iatrogenic spinal deformities is increasing due to the increase in instrumented spinal surgeries globally. Correcting a deformity could be challenging due to the complex anatomical and geometrical irregularities caused by previous surgeries and spine degeneration. Virtual and 3D printed models have the potential to illuminate the unique and complex anatomical-geometrical problems found in these patients. Case Presentation: We present a case report with 6-months follow-up (FU) of a 71 year old female patient with severe sagittal and coronal malalignment due to repetitive discectomy, decompression, laminectomy, and stabilization surgeries over the last 39 years. The patient suffered from severe low back pain (VAS = 9, ODI = 80). Deformity correction by performing asymmetric 3-column pedicle subtraction osteotomy (PSO) and stabilization were decided as the required surgical treatment. To better understand the complex anatomical condition, a patient-specific virtual geometry was defined by segmentation based on the preoperative CT. The geometrical accuracy was tested using the Dice Similarity Index (DSI). A complex 3D virtual plan was created for the surgery from the segmented geometry in addition to a 3D printed model. Discussion: The segmentation process provided a highly accurate geometry (L1 to S2) with a DSI value of 0.92. The virtual model was shared in the internal clinical database in 3DPDF format. The printed physical model was used in the preoperative planning phase, patient education/communication and during the surgery. The surgery was performed successfully, and no complications were registered. The measured change in the sagittal vertical axis was 7 cm, in the coronal plane the distance between the C7 plumb line and the central sacral vertical line was reduced by 4 cm. A 30° correction was achieved for the lumbar lordosis due to the PSO at the L4 vertebra. The patient ODI was reduced to 20 points at the 6-months FU. Conclusions: The printed physical model was considered advantageous by the surgical team in the pre-surgical phase and during the surgery as well. The model was able to simplify the geometrical problems and potentially improve the outcome of the surgery by preventing complications and reducing surgical time.

6.
J Orthop Translat ; 28: 131-139, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33898249

RESUMO

PURPOSE: Percutaneous cement discoplasty (PCD) is a minimally invasive surgical option to treat patients who suffer from the consequences of advanced disc degeneration. As the current two-dimensional methods can inappropriately measure the difference in the complex 3D anatomy of the spinal segment, our aim was to develop and apply a volumetric method to measure the geometrical change in the surgically treated segments. METHODS: Prospective clinical and radiological data of 10 patients who underwent single- or multilevel PCD was collected. Pre- and postoperative CT scan-based 3D reconstructions were performed. The injected PMMA (Polymethylmethacrylate) induced lifting of the cranial vertebra and the following volumetric change was measured by subtraction of the geometry of the spinal canal from a pre- and postoperatively predefined cylinder. The associations of the PMMA geometry and the volumetric change of the spinal canal with clinical outcome were determined. RESULTS: Change in the spinal canal volume (ΔV) due to the surgery proved to be significant (mean ΔV = 2266.5 ±â€¯1172.2 mm3, n = 16; p = 0.0004). A significant, positive correlation was found between ΔV, the volume and the surface of the injected PMMA. A strong, significant association between pain intensity (low back and leg pain) and the magnitude of the volumetric increase of the spinal canal was shown (ρ = 0.772, p = 0.009 for LBP and ρ = 0.693, p = 0.026 for LP). CONCLUSION: The developed method is accurate, reproducible and applicable for the analysis of any other spinal surgical method. The volume and surface area of the injected PMMA have a predictive power on the extent of the indirect spinal canal decompression. The larger the ΔV the higher clinical benefit was achieved with the PCD procedure. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The developed method has the potential to be integrated into clinical software's to evaluate the efficacy of different surgical procedures based on indirect decompression effect such as PCD, anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), oblique lumbar interbody fusion (OLIF), extreme lateral interbody fusion (XLIF). The intraoperative use of the method will allow the surgeon to respond if the decompression does not reach the desired level.

7.
Front Surg ; 7: 583386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585544

RESUMO

Introduction: Revision surgery of a previous lumbosacral non-union is highly challenging, especially in case of complications, such as a broken screw at the first sacral level (S1). Here, we propose the implementation of a new method based on the CT scan of a clinical case using 3D reconstruction, combined with finite element analysis (FEA), computer-assisted design (CAD), and 3D-printing technology to provide accurate surgical navigation to aid the surgeon in performing the optimal surgical technique by inserting a pedicle screw at the S1 level. Materials and Methods: A step-by-step approach was developed and performed as follows: (1) Quantitative CT based patient-specific FE model of the sacrum was created. (2) The CAD model of the pedicle screw was inserted into the sacrum model in a bicortical convergent and a monocortical divergent position, by overcoming the geometrical difficulty caused by the broken screw. (3) Static FEAs (Abaqus, Dassault Systemes) were performed using 500 N tensile load applied to the screw head. (4) A template with two screw guiding structures for the sacrum was designed and manufactured using CAD design and 3D-printing technologies, and investment casting. (5) The proposed surgical technique was performed on the patient-specific physical model created with the FDM printing technology. The patient-specific model was CT scanned and a comparison with the virtual plan was performed to evaluate the template accuracy Results: FEA results proved that the modified bicortical convergent insertion is stiffer (6,617.23 N/mm) compared to monocortical divergent placement (2,989.07 N/mm). The final template was created via investment casting from cobalt-chrome. The template design concept was shown to be accurate (grade A, Gertzbein-Robbins scale) based on the comparison of the simulated surgery using the patient-specific physical model and the 3D virtual surgical plan. Conclusion: Compared to the conventional surgical navigation techniques, the presented method allows the consideration of the patient-specific biomechanical parameters; is more affordable, and the intraoperative X-ray exposure can be reduced. This new patient- and condition-specific approach may be widely used in revision spine surgeries or in challenging primary cases after its further clinical validation.

8.
Brain Res Bull ; 152: 143-158, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302238

RESUMO

Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Neuralgia/tratamento farmacológico , Animais , Glicina/farmacologia , Humanos , Hiperalgesia/tratamento farmacológico , Neuralgia/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/análogos & derivados , Serina/farmacologia , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA