Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Biol Macromol ; 279(Pt 3): 135459, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39250989

RESUMO

Staphylococcus aureus (S. aureus), commonly found on the skin and nose, causes minor skin conditions to life-threatening diseases, including boils or impetigo, pneumonia, and bloodstream infections. MRSA (Methicillin-Resistant S. aureus) is a strain resistant to many antibiotics and poses a significant challenge in clinical settings. Nowadays, the alternative drug Linezolid is used, and it is not clear when MRSA starts resistance to it, necessitating the need for more alternative drugs with the least chance of developing resistance. This study aims to identify a multitargeted drug candidate with better efficacy than Linezolid. We have taken three hydrolase and transferase proteins from S. aureus, performed the multitargeted docking studies with human-approved drugs, and compared them with the control drug Linezolid. The docking and MM\GBSA scores ranging from -6.79 to -5.78 Kcal/mol and - 37.47 to 30.16 Kcal/mol, respectively, that revealed Deprodone (used for inflammatory skin disorders, bowel disease, and fatty acid metabolism disorders) can be a far better and multitargeted drug candidate than Linezolid. We extended our studies to include extensive pharmacokinetics and molecular interaction fingerprints for interaction pattern studies. Also, the DFT computations optimised the drug, and we extended our studies for MD Simulation in water for 100 ns, which showed the complexes among the identified drug with proteins are entirely stable with acceptable deviation, fluctuations and many intermolecular interactions that make them stable. We also performed the MM\GBSA studies on MD simulation's all 1000 frames to understand the complex energy level. All the results reveal promising interactions between Deprodone and the targeted enzymes, suggesting its potential as a multitargeted therapeutic agent-however, experimental studies need to validate Deprodone against MRSA.

2.
Medicina (Kaunas) ; 60(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39202544

RESUMO

Background and Objective: This study aimed to explore the impact of physical activity on depression, anxiety, and stress among pregnant women in the Jazan region of Saudi Arabia. Materials and Methods: A descriptive cross-sectional study was conducted among pregnant women attending randomly selected prenatal clinics in primary healthcare hospitals in Jazan, Saudi Arabia. The calculated sample size was 350. Data were collected conveniently through a semi-structured questionnaire covering demographic details, pregnancy-related characteristics, physical activity assessed using the Pregnancy Physical Activity Questionnaire (PPAQ), and mental health parameters evaluated by the Depression, Anxiety, and Stress Scale-21 (DASS-21). The statistical analyses included descriptive statistics and Wilcoxon and Kruskal-Wallis rank sum tests, with significance levels set at p < 0.05. Results: The study involved 406 pregnant females. Nearly a third (31%) had a family history of depression, anxiety, or distress. The prevalence of depression, anxiety, and stress was 62.6%, 68.7%, and 38.4%, respectively. The mean sedentary, light, moderate, vigorous, and total energy expenditures were 1.512, 24.35, 22.32, 4.84, and 53.02 metabolic equivalent tasks/day. Anxious females exhibited higher light activity (median 24, p = 0.033), while stressed ones showed higher light (median 25, p = 0.039), moderate (median 20, p < 0.001), and vigorous activity (median 3, p < 0.001). A significant association was observed between total energy expenditure and stress levels (p < 0.001). Conclusions: This study underscores the importance of physical activity in managing depression, anxiety, and stress among pregnant women in Jazan, Saudi Arabia. The findings suggest a need for tailored interventions to promote physical activity to improve mental well-being during pregnancy.


Assuntos
Ansiedade , Depressão , Exercício Físico , Estresse Psicológico , Humanos , Feminino , Arábia Saudita/epidemiologia , Estudos Transversais , Gravidez , Adulto , Exercício Físico/psicologia , Exercício Físico/fisiologia , Ansiedade/psicologia , Ansiedade/epidemiologia , Depressão/psicologia , Depressão/epidemiologia , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Inquéritos e Questionários , Prevalência , Complicações na Gravidez/psicologia , Complicações na Gravidez/epidemiologia , Gestantes/psicologia
3.
Acta Parasitol ; 69(3): 1439-1457, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150581

RESUMO

BACKGROUND: Leishmaniasis is a deadly protozoan parasitic disease and a significant health problem in underdeveloped and developing countries. The global spread of the parasite, coupled with the emergence of drug resistance and severe side effects associated with existing treatments, has necessitated the identification of new and potential drugs. OBJECTIVE: This study aimed to identify promising compounds for the treatment of leishmaniasis by targeting two essential enzymes of Leishmania donovani: trypanothione reductase (Try-R) and trypanothione synthetase (Try-S). METHODS: High-throughput virtual and in vitro screening of in-house and commercial databases was conducted. A pharmacophore model with seven features was developed and validated using the Guner-Henery method. The pharmacophore-based virtual screening yielded 690 hits, which were further filtered through Lipinski's rule, ADMET analysis, and molecular docking against Try-R and Try-S. Molecular dynamics studies were performed on selected compounds, and in vitro experiments were conducted to evaluate their activity against the promastigote and amastigote forms of L. donovani. RESULTS: The virtual screening and subsequent analysis identified 33 promising compounds. Molecular dynamics studies of two compounds (comp-1 and comp-2) demonstrated stable binding interactions with the target enzymes and high affinity. In vitro experiments revealed that 13 compounds exhibited moderate activity against both the promastigote (IC50, 41 µM-76 µM) and the amastigote (IC50, 44 µM-72 µM) forms of L. donovani. Compounds 1 and 2 showed the highest percent inhibition and the lowest IC50 values. CONCLUSION: The identified compounds demonstrated significant inhibitory activity against Leishmania donovani and stable interactions with target enzymes. These findings suggest that the compounds could serve as promising leads for developing new treatments for leishmaniasis.


Assuntos
Antiprotozoários , Ensaios de Triagem em Larga Escala , Leishmania donovani , Simulação de Acoplamento Molecular , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Antiprotozoários/farmacologia , Antiprotozoários/química , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Amida Sintases/antagonistas & inibidores , Amida Sintases/metabolismo , Amida Sintases/química , Avaliação Pré-Clínica de Medicamentos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Simulação de Dinâmica Molecular
4.
Front Pharmacol ; 15: 1413844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086388

RESUMO

Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.

5.
Heliyon ; 10(15): e34410, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170440

RESUMO

The NOD-Like Receptor Protein-3 (NLRP3) inflammasome is a key therapeutic target for the treatment of epilepsy and has been reported to regulate inflammation in several neurological diseases. In this study, a machine learning-based virtual screening strategy has investigated candidate active compounds that inhibit the NLRP3 inflammasome. As machine learning-based virtual screening has the potential to accurately predict protein-ligand binding and reduce false positives outcomes compared to traditional virtual screening. Briefly, classification models were created using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) machine learning methods. To determine the most crucial features of a molecule's activity, feature selection was carried out. By utilizing 10-fold cross-validation, the created models were analyzed. Among the generated models, the RF model obtained the best results as compared to others. Therefore, the RF model was used as a screening tool against the large chemical databases. Molecular operating environment (MOE) and PyRx software's were applied for molecular docking. Also, using the Amber Tools program, molecular dynamics (MD) simulation of potent inhibitors was carried out. The results showed that the KNN, SVM, and RF accuracy was 0.911 %, 0.906 %, and 0.946 %, respectively. Moreover, the model has shown sensitivity of 0.82 %, 0.78 %, and 0.86 % and specificity of 0.95 %, 0.96 %, and 0.98 % respectively. By applying the model to the ZINC and South African databases, we identified 98 and 39 compounds, respectively, potentially possessing anti-NLRP3 activity. Also, a molecular docking analysis produced ten ZINC and seven South African compounds that has comparable binding affinities to the reference drug. Moreover, MD analysis of the two complexes revealed that the two compounds (ZINC000009601348 and SANC00225) form stable complexes with varying amounts of binding energy. The in-silico studies indicate that both compounds most likely display their inhibitory effect by inhibiting the NLRP3 protein.

6.
J Eval Clin Pract ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963909

RESUMO

RATIONAL: Online Diabetes Self-Management Education and Support (DSMES) offers people with type 2 diabetes mellitus (T2DM) accessible and tailored education, utilising innovative and interactive tools such as social media to enhance engagement and outcomes. Despite the demonstrated effectiveness of social media-based DSMES in improving health outcomes, there remains a significant gap in qualitative insights regarding participants' experiences. AIM: This study aims to explore the experiences of people with T2DM who are using a newly developed WhatsApp-based DSMES. METHODS: A qualitative descriptive approach was adopted. Data consisted of 23 semi-structured phone interviews with people with T2DM who had received the WhatsApp-based DSMES. Interviews were analysed using qualitative content analysis. The present study adheres to the COREQ guidelines. RESULTS: Four themes emerged from the data: (1) acceptability of the programme, (2) flexible accessibility of the programme, (3) promoting healthy lifestyle and (4) future preferences for the programme use. CONCLUSION: This study explored the experiences of people with T2DM participating in a 6-week WhatsApp-based DSMES. The findings indicated that the programme was acceptable, accessible, effectively revealing necessary self-management knowledge and skills, and provided essential support from professional and peer. The study also indicated that WhatsApp-based programmes could be feasibly implemented in various populations, healthcare settings and communities to support people with T2DM globally.

7.
PLoS One ; 19(6): e0304147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861564

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a cancer type that is thought to be influenced by human papillomaviruses (HPVs) and human polyomaviruses (HPyVs). In Egypt, CRC ranks as the 7th most common cancer, accounting for 3.47% of male cancers and 3% of female cancers. However, there is currently a lack of information regarding the presence of PyVs and HPVs co-infection specifically in CRC cases in Egypt. Therefore, the aim of this study was to investigate the occurrence of HPVs and HPyVs (JCPyV, BKPyV, and SV40) infections, as well as co-infections, among CRC patients in Egypt. Additionally, the study aimed to assess any potential association between these viral infections and tumor stages. METHODS: In the present study, we analyzed a total of 51 tissue samples obtained from Egyptian CRC patients, along with 19 polyps' samples. Our investigation focused on the detection and genotyping of HPyVs using Real-Time PCR. Additionally, we employed real-time PCR for the detection of HPVs, and for their genotyping, we utilized a combination of PCR amplification followed by sequencing. RESULTS: In our study, we found evidence of HPyVs infection in the CRC patients, specifically SV40 (25.5%) and BKPyV (19.6%). However, JCPyV was not detected in the samples that were examined. Additionally, we discovered that HPV was present in 43.1% of the CRC patients. When considering viral co-infections, 19.6% of the CRC samples showed coexistence of multiple viruses, while no co-infections were found in the polyps samples. Importantly, we observed a significant correlation between the presence of HPVs and advanced colorectal tumor grades B2 and D. CONCLUSION: Our findings provide valuable data for the detection of oncogenic viruses in colorectal cancer (CRC) and underscore the association of viral co-infections with advanced tumor stages. However, further research with larger cohorts is necessary to validate these findings and strengthen their significance in the field of CRC.


Assuntos
Neoplasias Colorretais , Papillomaviridae , Infecções por Papillomavirus , Infecções por Polyomavirus , Polyomavirus , Humanos , Neoplasias Colorretais/virologia , Egito/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/complicações , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/complicações , Polyomavirus/isolamento & purificação , Polyomavirus/genética , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Estudos de Casos e Controles , Coinfecção/virologia , Coinfecção/epidemiologia , Idoso , Adulto , Infecções Tumorais por Vírus/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/complicações , Genótipo
8.
Rev Med Virol ; 34(4): e2554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862398

RESUMO

The Varicella-zoster virus (VZV), classified as a neurotropic member of the Herpesviridae family, exhibits a characteristic pathogenicity, predominantly inducing varicella, commonly known as chickenpox, during the initial infectious phase, and triggering the reactivation of herpes zoster, more commonly recognized as shingles, following its emergence from a latent state. The pathogenesis of VZV-associated neuroinflammation involves a complex interplay between viral replication within sensory ganglia and immune-mediated responses that contribute to tissue damage and dysfunction. Upon primary infection, VZV gains access to sensory ganglia, establishing latent infection within neurons. During reactivation, the virus can spread along sensory nerves, triggering a cascade of inflammatory mediators, chemokines, and immune cell infiltration in the affected neural tissues. The role of both adaptive and innate immune reactions, including the contributions of T and B cells, macrophages, and dendritic cells, in orchestrating the immune-mediated damage in the central nervous system is elucidated. Furthermore, the aberrant activation of the natural defence mechanism, characterised by the dysregulated production of immunomodulatory proteins and chemokines, has been implicated in the pathogenesis of VZV-induced neurological disorders, such as encephalitis, myelitis, and vasculopathy. The intricate balance between protective and detrimental immune responses in the context of VZV infection emphasises the necessity for an exhaustive comprehension of the immunopathogenic mechanisms propelling neuroinflammatory processes. Despite the availability of vaccines and antiviral therapies, VZV-related neurological complications remain a significant concern, particularly in immunocompromised individuals and the elderly. Elucidating these mechanisms might facilitate the emergence of innovative immunomodulatory strategies and targeted therapies aimed at mitigating VZV-induced neuroinflammatory damage and improving clinical outcomes. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of VZV infections.


Assuntos
Herpesvirus Humano 3 , Humanos , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpes Zoster/virologia , Herpes Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/etiologia , Animais , Varicela/virologia , Varicela/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia
9.
Int J Biol Macromol ; 273(Pt 2): 133142, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889830

RESUMO

The present research reports the anti-cancer potential of recombinant L-Glutaminase from Streptomyces roseolus. L-Glutaminase gene was synthesized by codon-optimization, cloned and successfully expressed in E. coli BL21 (DE3). Affinity purified recombinant L-Glutaminase revealed a molecular mass of 32 kDa. Purified recombinant L-Glutaminase revealed stability at pH 7.0-8.0 with optimum activity at 70 °C further indicating its thermostable nature based on thermodynamic characterization. Recombinant L-Glutaminase exhibited profound stability in the presence of several biochemical parameters and demonstrated its metalloenzyme nature and was also found to be highly specific towards favorable substrate (l-Glutamine) based on kinetics. It demonstrated antioxidant property and pronounced cytotoxic effect against breast cancer (MCF-7 cell lines) in a dose dependent behavior with IC50 of 40.68 µg/mL. Matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of desired mass peaks ascertained the recombinant L-Glutaminase identity. N-terminal amino acid sequence characterization through Edman degradation revealed highest resemblance for L-glutaminase within the Streptomyces sp. family. The purified protein was characterized structurally and functionally by employing spectroscopic methods like Raman, circular dichroism and nuclear magnetic resonance. The thermostability was assessed by thermogravimetric analysis. The outcomes of the study, suggests the promising application of recombinant L-Glutaminase as targeted therapeutic candidate for breast cancer.


Assuntos
Glutaminase , Proteínas Recombinantes , Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Humanos , Glutaminase/química , Glutaminase/isolamento & purificação , Clonagem Molecular , Expressão Gênica , Células MCF-7 , Estabilidade Enzimática , Sequência de Aminoácidos , Cinética , Concentração de Íons de Hidrogênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo
10.
J Drug Target ; 32(8): 918-930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38842417

RESUMO

Drug resistance in cancer treatment presents a significant challenge, necessitating innovative approaches to improve therapeutic efficacy. Integrating machine learning (ML) in cancer research is promising as ML algorithms outrival in analysing complex datasets, identifying patterns, and predicting treatment outcomes. Leveraging diverse data sources such as genomic profiles, clinical records, and drug response assays, ML uncovers molecular mechanisms of drug resistance, enabling personalised treatment, maximising efficacy and minimising adverse effects. Various ML algorithms contribute to the drug discovery process - Random Forest and Decision Trees predict drug-target interactions and aid in virtual screening, and SVM classify leads on bioactivity data. Neural Networks model QSAR to optimise lead compounds and K-means clustering group compounds with similar chemical properties aiding compound selection. Gaussian Processes predict drug responses, Bayesian Networks infer causal relationships, Autoencoders generate novel compounds, and Genetic Algorithms optimise molecular structures. These algorithms collectively enhance efficiency and success rates in drug design endeavours, from lead identification to optimisation and are cost-effective, empowering clinicians with real-time treatment monitoring and improving patient outcomes. This review highlights the immense potential of ML in revolutionising cancer care through effective drug design to reduce drug resistance, and we have also discussed various limitations and research gaps to understand better.


Assuntos
Antineoplásicos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Medicina de Precisão/métodos , Algoritmos , Descoberta de Drogas/métodos , Teorema de Bayes
11.
Saudi J Biol Sci ; 31(8): 104035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934013

RESUMO

Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.

12.
J Multidiscip Healthc ; 17: 1887-1899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706506

RESUMO

Purpose: Artificial Intelligence is drastically used nowadays in healthcare, but little is known about the attitude and perception of medical students towards AI in Saudi Arabia. This study aimed to explore undergraduate medical student's views on AI, assessed their understanding of AI, and the level of confidence of using basic AI tools in the future. Methods: This cross-sectional study invited 303 medical undergraduate students to complete an anonymous electronic survey, which consists of questions related to attitude, understanding and confidence of using basic AI tools. We examined the statistical association between the categorical variables by using Chi-square test. Results: The results of the study indicate that eighty-seven percent of participants believed that AI will play significant role in healthcare. Thirty-eight percent respondents reported that they have an understanding of the basic computational principle of AI. 71.29% respondents agreed that teaching in AI would be favorable for their career. More than half of the participants were confident in using basic AI tools in the future, Male students (p = 0.00), 26-30 years old participants (p = 0.03), intern students (p = 0.00), and Imam Abdulrahman Bin Faisal University medical students (p = 0.04) had positive attitude of artificial intelligence. Male participants (p = 0.02), and intern students (p = 0.00) had the highest proportion of confidence in using basic healthcare AI tool. Nearly 14% students received training on AI. Participants who received training on AI reported better understanding of AI (p = 0.03), develops positive attitude towards teaching in AI (p = 0.05), more confidence in using basic healthcare AI tools (p = 0.05). Conclusion: Saudi medical undergraduate students understand the significance of AI and demonstrated a positive attitude towards AI. Medical students training on AI should be expanded and improved to avoid threats for seeking jobs by adapting artificial intelligence.

13.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38696111

RESUMO

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Assuntos
Antimaláricos , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Plasmodium falciparum , Prata , Terminalia , Prata/química , Prata/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Nanopartículas Metálicas/química , Terminalia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Humanos
14.
Med Oncol ; 41(5): 117, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630325

RESUMO

Among the most prevalent forms of cancer are breast, lung, colon-rectum, and prostate cancers, and breast cancer is a major global health challenge, contributing to 2.26 million cases with approximately 685,000 deaths worldwide in 2020 alone, typically beginning in the milk ducts or lobules that produce and transport milk during lactation and it is becoming challenging to treat as the tissues are developing resistance, which makes urgent calls for new multitargeted drugs. The multitargeted drug design provides a better solution, simultaneously targeting multiple pathways, even when the drug resists one, it remains effective for others. In this study, we included four crucial proteins that perform signalling, receptor, and regulatory action, namely- NUDIX Hydrolases, Dihydrofolate Reductase, HER2/neu Kinase and EGFR and performed multitargeted molecular docking studies against human-approved drugs using HTVS, SP and extra precise algorithms and filtered the poses with MM\GBSA, suggested a benzodiazepine derivative chlordiazepoxide, used as an anxiolytic agent, can be a multitargeted inhibitor with docking and MM\GBSA score ranging from - 4.628 to - 7.877 and - 18.59 to - 135.86 kcal/mol, respectively, and the most interacted residues were 6ARG, 6GLU, 3TRP, and 3VAL. The QikProp-based ADMET and DFT computations showed the suitability and stability of the drug candidate followed by 100 ns MD simulation in water and MMGBSA on trajectories, resulting in stable performance and many intermolecular interactions to make the complexes stable, which favours that chlordiazepoxide can be a multitargeted breast cancer inhibitor. However, experimental validation is needed before its use.


Assuntos
Neoplasias da Mama , Feminino , Masculino , Humanos , Neoplasias da Mama/tratamento farmacológico , Clordiazepóxido , Simulação de Acoplamento Molecular , Transdução de Sinais , Benzodiazepinas , Fatores de Transcrição
15.
Saudi J Biol Sci ; 31(5): 103976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38510528

RESUMO

The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.

16.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517073

RESUMO

Cervical cancer poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide and resulting in approximately 300,000 deaths yearly, predominantly caused by high-risk human papillomavirus strains (HPV), mainly types 16 and 18. The scenario poses the urgent need of the hour to develop effective treatment strategies that can address the complexity of cervical cancer and multitargeted inhibitor designing that holds promise as it can simultaneously target multiple proteins and pathways involved in its progression and have the potential to enhance treatment efficacy, reduce the likelihood of drug resistance. In this study, we have performed multitargeted molecular docking of FDA-approved drugs against cervical cancer replication and maintenance proteins- Xenopus kinesin-like protein-2 (3KND), cell division cycle protein-20 (4N14), MCM2-histone complex (4UUZ) and MCM6 Minichromosome maintenance (2KLQ) with HTVS, SP and XP algorithms and have obtained the docking and MM\GBSA score ranging from -8.492 to -5.189 Kcal/mol and -58.16 to -39.07 Kcal/mol. Further, the molecular interaction fingerprints identified ALA, THR, SER, ASN, LEU, and ILE were among the most interacted residues, leaning towards hydrophobic and polar amino acids. The pharmacokinetics and DFT of the compound have shown promising results. The complexes were simulated for 100 ns to study the stability by computing the deviation, fluctuations, and intermolecular interactions formed during the simulation. This study produced promising results, satisfying the criteria that Mitoxantrone 2HCl can be a multitargeted inhibitor against cervical cancer proteins-however, experimental validation is a must before human use.Communicated by Ramaswamy H. Sarma.

17.
J Biomol Struct Dyn ; : 1-18, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459941

RESUMO

Diabetes affects people of all ages, regardless of gender and background. To date, there is no evidence for the effect of sakuranetin against the streptozotocin (STZ)-induced diabetes paradigm. The research was directed to evaluate the antidiabetic activity of sakuranetin in the STZ model invoking the diabetes-induced disease paradigm. STZ (I.P. 60 mg/kg) is directed to induce type 2 diabetes in experimental rats. Recent research pursued to regulate the anti-diabetic ability of sakuranetin at both 10 and 20 mg/kg in STZ-induced rats. Furthermore, molecular docking research was implemented to evaluate sakuranetin requisite attraction to inflammatory indicators. Various anti-diabetic [(glucose, hemoglobin A1c (HbA1c), and insulin)], lipid profile [triglycerides (TG), total cholesterol (TC), and high-density lipoproteins (HDL)], hematological parameters [Hemoglobin (HGB), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), platelet (PLT), and white blood cells (WBC), pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)], antioxidant level [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH)], lipid oxidation, and caspase-3 were evaluated. Furthermore, molecular docking and dynamics were performed for TNF-α (2AZ5), IL-6 (1ALU), IL-1ß (6Y8M), Caspase-3 (1NME) and serum insulin (4IBM) target ligands. Sakuranetin treatment at both doses restored the biochemical parameters i.e. blood glucose, insulin, HbA1c, lipid profile, hematological parameters, pro-inflammatory markers, antioxidant levels, lipid oxidation, and caspase-3 in the context of diabetic rats. It also showed favorable binding affinity on inflammatory markers. Sakuranetin binds to proteins 2AZ5, 1ALU, 6Y8M, 1NME, and 4IBM at -7.489, -6.381, -6.742, -7.202, and -8.166 Kcal/mol, respectively. All of the findings from the molecular dynamics simulations points toward a considerable change in the conformational dynamics of protein upon binding with sakuranetin. The potential use of sakuranetin as an alternative diabetes medication will aid future research as a potent anti-diabetic agent.Communicated by Ramaswamy H. Sarma.

18.
BMC Res Notes ; 17(1): 66, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443929

RESUMO

BACKGROUND: Recurrent pregnancy Loss (RPL) is common problem affecting many couples. A certain genetic variants link to increase the danger of this condition particularly HPA-1, HPA-3 and Human Factor XIII Val34Leu Mutation. The present study aims to find an association between RPL and the Factor XIII Val34Leu polymorphism, as well as HPA-1 and HPA-3 in Sudanese women with RPL. METHODS: This case-control study conducted between June 2022 and December 2022 included 216 women, with 103 cases having minimum three abortions in the past, and 113 healthy controls with at least two full-term births and no abortion history. DNA was isolated from whole blood and the status of three genetic polymorphisms (HPA-1, HPA-3, and factor XIII) was done using a polymerase chain reaction (PCR). Data was analysed using the SPSS version 24 software. RESULTS: The A/A genotype was found to be more prevalent in cases (79.6%) and controls (96.5%) regarding HPA-1. A significant difference was observed in overall allele frequency for B allele (97.0%) and expected frequency of A allele was (81.1%) using the Hardy-Weinberg distribution (p < 0.001). The genotype A/A was most common in these patients (90.3%) and controls (100%), while B/B genotype was only (9.7%) in patients regarding HPA-3. Furthermore, the frequency of Val/Val genotype was higher in cases (88.3%) as compared with controls (90.3%). The risk of RPL in patients was nearly the same in Val/Leu individuals and controls group but all these differences were not statistically significant (p > 0.05). CONCLUSION: Our results indicate a link between Human Platelet Antigen-1 (HPA-1), Human Platelet Antigen-3 (HPA-3) and Factor XIII gene polymorphism with RPL.


Assuntos
Aborto Habitual , Antígenos de Plaquetas Humanas , Gravidez , Humanos , Feminino , Fator XIII/genética , Antígenos de Plaquetas Humanas/genética , Estudos de Casos e Controles , Polimorfismo Genético , Mutação , Aborto Habitual/genética
19.
Cureus ; 16(2): e53448, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435140

RESUMO

Background and objectives The exact etiology of migraine is unknown; however, it is likely a mixture of genetic and non-genetic factors including lifestyle variables like smoking and diet. This study aims to assess the causal effect of modifiable risk factors on the risk of migraine using two-sample Mendelian randomization. Materials and methods The study used publicly available genome-wide significant single nucleotide polymorphisms (SNPs). The study evaluated a diverse smoking exposure, encompassing age at smoking initiation, smoking intensity, and maternal smoking, alongside other pertinent risk factors, namely key dietary aspects, coffee consumption, BMI, and physical activity. Self-reported migraine was the outcome of the study. The genetic data for migraine were obtained from the FinnGen (Finland) and the UK Biobank (United Kingdom) cohorts. Results With sample sizes ranging from 64,949 to 632,802 for each risk factor collected from several consorts, the study included a total of 282 SNPs for all risk factors. The findings demonstrated that in the FinnGen consortium, genetically estimated dietary factors as well as BMI, were significantly associated with the risk of migraine (OR 0.765 per single unit of BMI, p = 0.011; OR 0.468 per one SD higher cheese intake, p = 0.012; OR 0.286 per one SD higher salad intake, p = 0.004, and 0.625 per one SD higher coffee consumption, p = 0.003, respectively). The results also showed that in the UK Biobank specifically, a genetically estimated history of maternal smoking was significantly associated with an elevated risk of migraine (OR=1.02, p=0.004). Conclusions The latest study implies a connection between maternal smoking and a heightened risk of migraines, whereas cheese intake, salad intake, coffee consumption, BMI, and physical activity are associated with a lower risk of migraine development.

20.
Int J Biol Macromol ; 265(Pt 2): 131064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518935

RESUMO

Protein kinases are an attractive therapeutic target for cardiovascular, cancer and neurodegenerative diseases. Cancer cells demand energy generation through aerobic glycolysis, surpassing "oxidative phosphorylation" (OXPHOS) in mitochondria. The pyruvate dehydrogenase kinases (PDKs) have many regulatory roles in energy generation balance by controlling the pyruvate dehydrogenase complex. Overexpression of PDKs is associated with the overall survival of cancer. PDK3, an isoform of PDK is highly expressed in various cancer types, is targeted for inhibition in this study. PDK3 has been shown to binds strongly with a natural compound, thymoquinone (TQ), which is known to exhibit anti-cancer potential. Detailed interaction between the PDK3 and TQ was carried out using spectroscopic and docking methods. The overall changes in the protein's structures after TQ binding were estimated by UV-Vis spectroscopy, circular dichroism and fluorescence binding studies. The kinase activity assay was also carried out to see the kinase inhibitory potential of TQ. The enzyme inhibition assay suggested an excellent inhibitory potential of TQ towards PDK3 (IC50 = 5.49 µM). We observed that TQ forms a stable complex with PDK3 without altering its structure and can be a potent PDK3 inhibitor which may be implicated in cancer therapy after desired clinical validation.


Assuntos
Benzoquinonas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Neoplasias Pulmonares/tratamento farmacológico , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA