Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(10): 178, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549358

RESUMO

Paludifilum halophilum DSM 102817T is the first member of the genus Paludifilum in the Thermoactinomycetaceae family. The thermohalophilic bacterium was isolated from the solar saltern of Sfax, Tunisia and was shown to be able to produce ectoines with a relatively high-yield and to cope with salt stress conditions. In this study, the whole genome of P. halophilum was sequenced and analysed. Analysis revealed 3,789,765 base pairs with an average GC% content of 51.5%. A total of 3775 genes were predicted of which 3616 were protein-coding genes and 73 were RNA genes. The genes encoding key enzymes for ectoines (ectoine and hydroxyectoine) synthesis (ectABCD) were identified from the bacterial genome next to a gene cluster (ehuABCD) encoding a binding-protein-dependent ABC transport system responsible for ectoines mobility through the cell membrane. With the aid of KEGG analysis, we found that the central catabolic network of P. halophilum comprises the pathways of glycolysis, tricarboxylic acid cycle, and pentose phosphate. In addition, anaplerotic pathways replenishing oxaloacetate and glutamate synthesis from central metabolism needed for high ectoines biosynthetic fluxes were identified through several key enzymes. Furthermore, a total of 18 antiSMASH-predicted putative biosynthetic gene clusters for secondary metabolites with high novelty and diversity were identified in P. halophilum genome, including biosynthesis of colabomycine-A, fusaricidin-E, zwittermycin A, streptomycin, mycosubtilin and meilingmycin. Based on these data, P. halophilum emerged as a promising source for ectoines and antimicrobials with the potential to be scaled up for industrial production, which could benefit the pharmaceutical and cosmetic industries.


Assuntos
Diamino Aminoácidos/metabolismo , Bacillales , Metabolismo Secundário/genética , Bacillales/genética , Bacillales/metabolismo , Biologia Computacional , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Salinidade , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA