Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(24): 7816-7825, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38048559

RESUMO

Despite the proven potential of metal complexes as therapeutics, the lack of computational tools available for the high-throughput screening of their interactions with proteins is a limiting factor toward clinical developments. To address this challenge, we introduce MetalDock, an easy-to-use, open access docking software for docking metal complexes to proteins. Our tool integrates the AutoDock docking engine with three well-known quantum software packages to automate the docking of metal-organic complexes to proteins. We used a Monte Carlo sampling scheme to obtain the missing Lennard-Jones parameters for 12 metal atom types and demonstrated that these parameters generalize exceptionally well. Our results show that the poses obtained by MetalDock are highly accurate, as they predict the binding geometries experimentally determined by crystal structures with high spatial reproducibility. Three different case studies are presented that demonstrate the versatility of MetalDock for the docking of diverse metal-organic compounds to different biomacromolecules, including nucleic acids.


Assuntos
Complexos de Coordenação , Acesso à Informação , Reprodutibilidade dos Testes , Ligantes , Proteínas/química , Software , Simulação de Acoplamento Molecular , Ligação Proteica
2.
J Am Chem Soc ; 145(24): 13420-13434, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294954

RESUMO

While photosubstitution reactions in metal complexes are usually thought of as dissociative processes poorly dependent on the environment, they are, in fact, very sensitive to solvent effects. Therefore, it is crucial to explicitly consider solvent molecules in theoretical models of these reactions. Here, we experimentally and computationally investigated the selectivity of the photosubstitution of diimine chelates in a series of sterically strained ruthenium(II) polypyridyl complexes in water and acetonitrile. The complexes differ essentially by the rigidity of the chelates, which strongly influenced the observed selectivity of the photosubstitution. As the ratio between the different photoproducts was also influenced by the solvent, we developed a full density functional theory modeling of the reaction mechanism that included explicit solvent molecules. Three reaction pathways leading to photodissociation were identified on the triplet hypersurface, each characterized by either one or two energy barriers. Photodissociation in water was promoted by a proton transfer in the triplet state, which was facilitated by the dissociated pyridine ring acting as a pendent base. We show that the temperature variation of the photosubstitution quantum yield is an excellent tool to compare theory with experiments. An unusual phenomenon was observed for one of the compounds in acetonitrile, for which an increase in temperature led to a surprising decrease in the photosubstitution reaction rate. We interpret this experimental observation based on complete mapping of the triplet hypersurface of this complex, revealing thermal deactivation to the singlet ground state through intersystem crossing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA