Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Microb Cell Fact ; 23(1): 52, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360657

RESUMO

BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation. RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4. CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico , Caproatos/metabolismo , Hidroxibutiratos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Grânulos Citoplasmáticos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo
2.
J Biochem ; 175(1): 57-67, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812440

RESUMO

The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Transporte/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Domínios de Homologia de src , Fatores de Transcrição/metabolismo , Prolina/metabolismo , Ligação Proteica
3.
Sci Adv ; 9(17): eadf5143, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126564

RESUMO

The higher-order assembly of Bin-amphiphysin-Rvs (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, into lattice on the membrane is essential for the formation of subcellular structures. However, the regulation of their ordered assembly has not been elucidated. Here, we show that the higher ordered assembly of growth-arrested specific 7 (GAS7), an F-BAR domain protein, is regulated by the multivalent scaffold proteins of Wiskott-Aldrich syndrome protein (WASP)/neural WASP, that commonly binds to the BAR domain superfamily proteins, together with WISH, Nck, the activated small guanosine triphosphatase Cdc42, and a membrane-anchored phagocytic receptor. The assembly kinetics by fluorescence resonance energy transfer monitoring indicated that the GAS7 assembly on liposomes started within seconds and was further increased by the presence of these proteins. The regulated GAS7 assembly was abolished by Wiskott-Aldrich syndrome mutations both in vitro and in cellular phagocytosis. Therefore, Cdc42 and the scaffold proteins that commonly bind to the BAR domain superfamily proteins promoted GAS7 assembly.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteína da Síndrome de Wiskott-Aldrich , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Actinas/metabolismo
4.
J Biosci Bioeng ; 134(4): 288-294, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953354

RESUMO

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as a commercial bioplastic due to its biodegradability, thermoplastic and mechanical properties. The properties of this copolymer are greatly affected by the composition of 3HHx monomer. One of the most efficient ways to modulate the composition of 3HHx monomer in P(3HB-co-3HHx) is by manipulating the (R)-3HHx-CoA monomer supply. In this study, a new (R)-specific enoyl-CoA hydratase originating from a non-PHA producer, Streptomyces sp. strain CFMR 7 (PhaJSs), was characterized and found to be effective in supplying 3HHx monomer during in vivo production of P(3HB-co-3HHx) copolymer. The P(3HB-co-3HHx) copolymer produced from the Cupriavidus necator transformant that harbors phaJSs, PHB-4/pBBR1-CBP-M-CPF4JSs, showed enhanced 3HHx incorporation of up to 11 mol% without affecting the P(3HB-co-3HHx) production when palm oil was used as the carbon source. In addition, both kcat and kcat/Km of PhaJSs were higher toward the C6 than the shorter C4 substrates, underscoring the preference for 3-hydroxyhexanoyl-CoA. These results suggest that PhaJSs has a significant ability to supply 3HHx monomers for PHA biosynthesis via ß-oxidation and can be applied for metabolic engineering of robust PHA-producing strains.


Assuntos
Cupriavidus necator , Streptomyces , Ácido 3-Hidroxibutírico/metabolismo , Caproatos/metabolismo , Carbono/metabolismo , Coenzima A/metabolismo , Cupriavidus necator/metabolismo , Enoil-CoA Hidratase/metabolismo , Óleo de Palmeira/metabolismo , Streptomyces/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 11): 427-434, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726182

RESUMO

Glutamine synthetase (GS) is a decameric enzyme that plays a key role in nitrogen metabolism. Acetylation of the N-terminal degron (N-degron) of GS is essential for ubiquitylation and subsequent GS degradation. The full-length GS structure showed that the N-degron is buried inside the GS decamer and is inaccessible to the acetyltransferase. The structure of N-degron-truncated GS reported here reveals that the N-degron is not essential for GS decamer formation. It is also shown that the N-degron can be exposed to a solvent region through a series of conformational adjustments upon ligand binding. In summary, this study elucidated the dynamic movement of the N-degron and the possible effect of glutamine in enhancing the acetylation process.


Assuntos
Glutamato-Amônia Ligase , Glutamina , Cristalografia por Raios X , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/química , Humanos , Ubiquitinação
6.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1064-1076, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342279

RESUMO

α-Glucosidase (EC 3.2.1.20) is a carbohydrate-hydrolyzing enzyme which generally cleaves α-1,4-glycosidic bonds of oligosaccharides and starch from the nonreducing ends. In this study, the novel α-glucosidase from Weissella cibaria BBK-1 (WcAG) was biochemically and structurally characterized. WcAG belongs to glycoside hydrolase family 13 (GH13) and to the neopullanase subfamily. It exhibits distinct hydrolytic activity towards the α-1,4 linkages of short-chain oligosaccharides from the reducing end. The enzyme prefers to hydrolyse maltotriose and acarbose, while it cannot hydrolyse cyclic oligosaccharides and polysaccharides. In addition, WcAG can cleave pullulan hydrolysates and strongly exhibits transglycosylation activity in the presence of maltose. Size-exclusion chromatography and X-ray crystal structures revealed that WcAG forms a homodimer in which the N-terminal domain of one monomer is orientated in proximity to the catalytic domain of another, creating the substrate-binding groove. Crystal structures of WcAG in complexes with maltose, maltotriose and acarbose revealed a remarkable enzyme active site with accessible +2, +1 and -1 subsites, along with an Arg-Glu gate (Arg176-Glu296) in front of the active site. The -2 and -3 subsites were blocked by Met119 and Asn120 from the N-terminal domain of a different subunit, resulting in an extremely restricted substrate preference.


Assuntos
Oligossacarídeos/metabolismo , Weissella/metabolismo , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Cromatografia em Gel , Maltose/metabolismo , Weissella/enzimologia
7.
Int J Biol Macromol ; 186: 414-423, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246679

RESUMO

Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.


Assuntos
Aciltransferases/metabolismo , Betaproteobacteria/enzimologia , Corpos de Inclusão/enzimologia , Poli-Hidroxialcanoatos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Betaproteobacteria/genética , Betaproteobacteria/ultraestrutura , Sítios de Ligação , Domínio Catalítico , Estabilidade Enzimática , Corpos de Inclusão/genética , Corpos de Inclusão/ultraestrutura , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Sci Rep ; 11(1): 2120, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483563

RESUMO

Vesicle amine transport protein-1 (VAT-1) has been implicated in the regulation of vesicular transport, mitochondrial fusion, phospholipid transport and cell migration, and is a potential target of anticancer drugs. Little is known about the molecular function of VAT-1. The amino acid sequence indicates that VAT-1 belongs to the quinone oxidoreductase subfamily, suggesting that VAT-1 may possess enzymatic activity in unknown redox processes. To clarify the molecular function of VAT-1, we determined the three-dimensional structure of human VAT-1 in the free state at 2.3 Å resolution and found that VAT-1 forms a dimer with the conserved NADPH-binding cleft on each protomer. We also determined the structure of VAT-1 in the NADP-bound state at 2.6 Å resolution and found that NADP binds the binding cleft to create a putative active site with the nicotine ring. Substrate screening suggested that VAT-1 possesses oxidoreductase activity against quinones such as 1,2-naphthoquinone and 9,10-phenanthrenequinone.


Assuntos
NAD(P)H Desidrogenase (Quinona)/química , Domínios Proteicos , Multimerização Proteica , Proteínas de Transporte Vesicular/química , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/química , NADP/metabolismo , Ligação Proteica , Especificidade por Substrato , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Nat Commun ; 11(1): 4916, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004803

RESUMO

Self-incompatibility (SI) is a breeding system that promotes cross-fertilization. In Brassica, pollen rejection is induced by a haplotype-specific interaction between pistil determinant SRK (S receptor kinase) and pollen determinant SP11 (S-locus Protein 11, also named SCR) from the S-locus. Although the structure of the B. rapa S9-SRK ectodomain (eSRK) and S9-SP11 complex has been determined, it remains unclear how SRK discriminates self- and nonself-SP11. Here, we uncover the detailed mechanism of self/nonself-discrimination in Brassica SI by determining the S8-eSRK-S8-SP11 crystal structure and performing molecular dynamics (MD) simulations. Comprehensive binding analysis of eSRK and SP11 structures reveals that the binding free energies are most stable for cognate eSRK-SP11 combinations. Residue-based contribution analysis suggests that the modes of eSRK-SP11 interactions differ between intra- and inter-subgroup (a group of phylogenetically neighboring haplotypes) combinations. Our data establish a model of self/nonself-discrimination in Brassica SI.


Assuntos
Brassica rapa/fisiologia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Animais , Cristalografia , Flores/metabolismo , Haplótipos , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Pólen/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Células Sf9 , Spodoptera
10.
Sci Adv ; 6(35): eaba7637, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923628

RESUMO

We have demonstrated that a bacterial membrane protein, YeeE, mediates thiosulfate uptake. Thiosulfate is used for cysteine synthesis in bacteria as an inorganic sulfur source in the global biological sulfur cycle. The crystal structure of YeeE at 2.5-Å resolution reveals an unprecedented hourglass-like architecture with thiosulfate in the positively charged outer concave side. YeeE is composed of loops and 13 helices including 9 transmembrane α helices, most of which show an intramolecular pseudo 222 symmetry. Four characteristic loops are buried toward the center of YeeE and form its central region surrounded by the nine helices. Additional electron density maps and successive molecular dynamics simulations imply that thiosulfate can remain temporally at several positions in the proposed pathway. We propose a plausible mechanism of thiosulfate uptake via three important conserved cysteine residues of the loops along the pathway.

11.
Int J Biol Macromol ; 159: 250-257, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417540

RESUMO

Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of ß-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Aciltransferases/metabolismo , Cupriavidus necator/metabolismo , Fermentação , Óleos de Plantas/metabolismo , Ácido 3-Hidroxibutírico/isolamento & purificação , Caproatos/isolamento & purificação , Ativação Enzimática , Peso Molecular , Oxirredução , Óleo de Palmeira/metabolismo , Plasmídeos/química , Poli-Hidroxialcanoatos/biossíntese , Polímeros/metabolismo , Transformação Bacteriana
12.
iScience ; 23(5): 101084, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32388399

RESUMO

Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its ß-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.

13.
Nat Commun ; 11(1): 76, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900388

RESUMO

In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular ß-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Gravitropismo , Sensação Gravitacional , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta , Ligação Proteica
14.
Nat Commun ; 10(1): 191, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643123

RESUMO

The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/ß-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Hidrólise , Mutação , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética
15.
Appl Microbiol Biotechnol ; 103(3): 1131-1141, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511262

RESUMO

Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.


Assuntos
Aciltransferases/metabolismo , Aeromonas caviae/enzimologia , Chromobacterium/enzimologia , Cupriavidus necator/enzimologia , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas/enzimologia , Aciltransferases/genética , Aeromonas caviae/genética , Aeromonas caviae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Chromobacterium/genética , Chromobacterium/metabolismo , Cristalografia por Raios X , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia de Proteínas , Estrutura Terciária de Proteína , Pseudomonas/genética , Pseudomonas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Methods Mol Biol ; 1893: 273-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30565140

RESUMO

The GST pull-down assay is an intuitive and fast in vitro method for analyzing protein-protein or protein-ligand interactions and is comprised of a "bait" which is a GST-fused protein expressed in E. coli host or a baculovirus expression system and a "prey" which comprises putative binding partner protein(s) or other ligand molecule(s). This method is suitable for examining the direct interaction between two purified proteins and estimating the extent of the affinity.


Assuntos
Complexos Multiproteicos/química , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Bioensaio , Proteínas de Transporte/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
17.
Genes Cells ; 23(5): 370-385, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29542234

RESUMO

Mechanotransduction by α-catenin facilitates the force-dependent development of adherens junctions (AJs) by recruiting vinculin to reinforce actin anchoring of AJs. The α-catenin mechanotransducing action is facilitated by its force-sensing device region that autoinhibits the vinculin-binding site 1 (VBS1). Here, we report the high-resolution structure of the force-sensing device region of α-catenin, which shows the autoinhibited form comprised of helix bundles E, F and G. The cryptic VBS1 is embedded into helix bundle E stabilized by direct interactions with the autoinhibitory region forming helix bundles F and G. Our molecular dissection study showed that helix bundles F and G are stable in solution in each isolated form, whereas helix bundle E that contains VBS1 is unstable and intrinsically disordered in solution in the isolated form. We successfully identified key residues mediating the autoinhibition and produced mutated α-catenins that display variable force sensitivity and autoinhibition. Using these mutants, we demonstrate both in vitro and in vivo that, in the absence of this stabilization, the helix bundle containing VBS1 would adopt an unfolded form, thus exposing VBS for vinculin binding. We provide evidence for importance of mechanotransduction with the intrinsic force sensitivity for vinculin recruitment to adherens junctions of epithelial cell sheets with mutated α-catenins.


Assuntos
Actinas/metabolismo , Junções Aderentes/fisiologia , Mecanotransdução Celular , Vinculina/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Vinculina/química , Vinculina/genética , alfa Catenina/genética
18.
Proc Natl Acad Sci U S A ; 115(11): 2764-2769, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483251

RESUMO

Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.


Assuntos
Quimiotaxia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Cones de Crescimento/metabolismo , Deficiência Intelectual/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Actinas/metabolismo , Axônios/química , Axônios/metabolismo , Movimento Celular , Doenças Genéticas Ligadas ao Cromossomo X/genética , Cones de Crescimento/química , Humanos , Deficiência Intelectual/genética , Laminina/química , Laminina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Paraplegia Espástica Hereditária/genética
19.
FEBS Lett ; 592(4): 489-501, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29364510

RESUMO

The plant-specific GAI-RGA-and-SCR (GRAS) family of proteins function as transcriptional regulators and play critical roles in development and signalling. Recent structural studies have shed light on the molecular functions at the structural level. The conserved GRAS domain comprises an α-helical cap and α/ß core subdomains. The α-helical cap mediates head-to-head heterodimerization between SHR and SCR GRAS domains. This type of dimerization is predicted for the NSP1-NSP2 heterodimer and DELLA proteins such as RGA and SLR1 homodimers. The α/ß core subdomain possesses a hydrophobic groove formed by surface α3- and α7-helices and mediates protein-protein interactions. The groove of the SHR GRAS domain accommodates the zinc fingers of JKD, a BIRD/IDD family transcription factor, while the groove of the SCL7 GRAS domain mediates the SCL7 homodimerization.


Assuntos
Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato
20.
Sci Rep ; 8(1): 1575, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371682

RESUMO

Adherens junctions (AJs) adaptively change their intensities in response to intercellular tension; therefore, they integrate tension generated by individual cells to drive multicellular dynamics, such as morphogenetic change in embryos. Under intercellular tension, α-catenin, which is a component protein of AJs, acts as a mechano-chemical transducer to recruit vinculin to promote actin remodeling. Although in vivo and in vitro studies have suggested that α-catenin-mediated mechanotransduction is a dynamic molecular process, which involves a conformational change of α-catenin under tension to expose a cryptic vinculin binding site, there are no suitable experimental methods to directly explore the process. Therefore, in this study, we developed a novel system by combining atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF). In this system, α-catenin molecules (residues 276-634; the mechano-sensitive M1-M3 domain), modified on coverslips, were stretched by AFM and their recruitment of Alexa-labeled full-length vinculin molecules, dissolved in solution, were observed simultaneously, in real time, using TIRF. We applied a physiologically possible range of tensions and extensions to α-catenin and directly observed its vinculin recruitment. Our new system could be used in the fields of mechanobiology and biophysics to explore functions of proteins under tension by coupling biomechanical and biochemical information.


Assuntos
Fluorometria , Microscopia de Força Atômica , Vinculina/metabolismo , alfa Catenina/metabolismo , Animais , Camundongos , Ligação Proteica , Vinculina/isolamento & purificação , alfa Catenina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA