Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Heart J ; 44(48): 5146-5158, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37431535

RESUMO

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS: Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION: Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Etnicidade , Humanos , Consanguinidade , Estudos Prospectivos , Testes Genéticos , Cardiomiopatia Hipertrófica/diagnóstico , Mutação
2.
Front Cardiovasc Med ; 9: 840647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463757

RESUMO

Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.

3.
Nat Rev Cardiol ; 19(5): 314-331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34873286

RESUMO

The lungs are the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with severe hypoxia being the cause of death in the most critical cases. Coronavirus disease 2019 (COVID-19) is extremely heterogeneous in terms of severity, clinical phenotype and, importantly, global distribution. Although the majority of affected patients recover from the acute infection, many continue to suffer from late sequelae affecting various organs, including the lungs. The role of the pulmonary vascular system during the acute and chronic stages of COVID-19 has not been adequately studied. A thorough understanding of the origins and dynamic behaviour of the SARS-CoV-2 virus and the potential causes of heterogeneity in COVID-19 is essential for anticipating and treating the disease, in both the acute and the chronic stages, including the development of chronic pulmonary hypertension. Both COVID-19 and chronic pulmonary hypertension have assumed global dimensions, with potential complex interactions. In this Review, we present an update on the origins and behaviour of the SARS-CoV-2 virus and discuss the potential causes of the heterogeneity of COVID-19. In addition, we summarize the pathobiology of COVID-19, with an emphasis on the role of the pulmonary vasculature, both in the acute stage and in terms of the potential for developing chronic pulmonary hypertension. We hope that the information presented in this Review will help in the development of strategies for the prevention and treatment of the continuing COVID-19 pandemic.


Assuntos
COVID-19 , Hipertensão Pulmonar , Humanos , Pulmão , Pandemias , SARS-CoV-2
5.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003281

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart muscle disease, with a prevalence of at least 1 in 500 in the general population. The disease is pleiotropic and is characterized by an increased stiffness of the myocardium, partly due to changes in the extracellular matrix (ECM), with elevated levels of interstitial fibrosis. Myocardial fibrosis is linked to impaired diastolic function and possibly phenotypic heterogeneity of HCM. The ECM consists of a very large number of proteins, which actively interact with each other as well as with myocardial cells. The role of other multiple components of the ECM in HCM has not been defined. Fibulin-2 is a glycoprotein component of the ECM, which plays an important role during embryogenesis of the heart; however, its role in adult myocardium has not been adequately studied. We here describe, for the first time, abnormal expression of fibulin-2 in the myocardium in patients with HCM as compared to normal controls. This abnormal expression was localized in the cytoplasm of myocardial cells and in the interstitial fibroblasts. In addition, fibulin-2 levels, measured by ELISA, were significantly elevated in the serum of patients with HCM as compared to normal controls.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatia Hipertrófica/genética , Proteínas da Matriz Extracelular/genética , Matriz Extracelular/genética , Miocárdio/metabolismo , Adulto , Remodelamento Atrial/genética , Cardiomiopatia Hipertrófica/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo
6.
NPJ Genom Med ; 5: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110626

RESUMO

The integration of comprehensive genomic and phenotypic data from diverse ethnic populations offers unprecedented opportunities toward advancements in precision medicine and novel diagnostic technologies. Current reference genomic databases are not representative of the global human population, making variant interpretation challenging, especially in underrepresented populations, such as the North African population. To address this, the Egyptian Collaborative Cardiac Genomics (ECCO-GEN) Project launched a study comprising 1000 individuals free of cardiovascular disease (CVD). Here, we present the first 391 Egyptian healthy volunteers recruited to establish a pilot phenotyped control cohort. All individuals underwent detailed clinical investigation, including cardiac magnetic resonance imaging (MRI), and were sequenced using a targeted panel of 174 genes with reported roles in inherited cardiac conditions. We identified 1262 variants in 27 cardiomyopathy genes of which 15.1% were not captured in current global and regional genetic reference databases (here: gnomAD and Great Middle Eastern Variome). The ECCO-GEN project aims at defining the genetic landscape of an understudied population and providing individual-level genetic and phenotypic data to support future studies in CVD and population genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA