Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352270

RESUMO

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

2.
PNAS Nexus ; 1(3): pgac142, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36016708

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of mitochondrial protein frataxin, which plays a crucial role in iron-sulphur cluster formation and ATP production. The cellular function of frataxin is not entirely known. Here, we demonstrate that frataxin controls ketone body metabolism through regulation of 3-Oxoacid CoA-Transferase 1 (OXCT1), a rate limiting enzyme catalyzing the conversion of ketone bodies to acetoacetyl-CoA that is then fed into the Krebs cycle. Biochemical studies show a physical interaction between frataxin and OXCT1 both in vivo and in vitro. Frataxin overexpression also increases OXCT1 protein levels in human skin fibroblasts while frataxin deficiency decreases OXCT1 in multiple cell types including cerebellum and skeletal muscle both acutely and chronically, suggesting that frataxin directly regulates OXCT1. This regulation is mediated by frataxin-dependent suppression of ubiquitin-proteasome system (UPS)-dependent OXCT1 degradation. Concomitantly, plasma ketone bodies are significantly elevated in frataxin deficient knock-in/knockout (KIKO) mice with no change in the levels of other enzymes involved in ketone body production. In addition, ketone bodies fail to be metabolized to acetyl-CoA accompanied by increased succinyl-CoA in vitro in frataxin deficient cells, suggesting that ketone body elevation is caused by frataxin-dependent reduction of OXCT1 leading to deficits in tissue utilization of ketone bodies. Considering the potential role of metabolic abnormalities and deficiency of ATP production in FRDA, our results suggest a new role for frataxin in ketone body metabolism and also suggest modulation of OXCT1 may be a potential therapeutic approach for FRDA.

3.
Front Neurosci ; 16: 819569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401081

RESUMO

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function.

4.
Arch Biochem Biophys ; 702: 108698, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259796

RESUMO

In addition to ATP synthesis, mitochondria are highly dynamic organelles that modulate apoptosis, ferroptosis, and inflammasome activation. Through executing these varied functions, the mitochondria play critical roles in the development and progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich ataxia, among others. Impaired mitochondrial biogenesis and abnormal mitochondrial dynamics contribute to mitochondrial dysfunction in these diseases. Additionally, dysfunctional mitochondria play critical roles in signaling for both inflammasome activation and ferroptosis. Therapeutics are being developed to circumvent inflammasome activation and ferroptosis in dysfunctional mitochondria. Targeting these aspects of mitochondrial dysfunction may present viable therapeutic strategies for combatting the neurodegenerative diseases. This review aims to summarize the role of the mitochondria in the development and progression of neurodegenerative diseases and to present current therapeutic approaches that target mitochondrial dysfunction in these diseases.


Assuntos
Progressão da Doença , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Animais , Apoptose , Ferroptose , Humanos , Biogênese de Organelas
5.
Neurosci Lett ; 692: 107-114, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30391323

RESUMO

D-Serine, an endogenous coagonist of N-methyl-d-aspartate receptors (NMDARs) at the glycine binding site, is synthesized by serine racemase (SR) through conversion of l-Serine. Dysregulation of SR/D-Serine and Disrupted-In-Schizophrenia-1 (DISC1) contributes to the pathogenesis of schizophrenia at converging pathways, as perturbation of SR-DISC1 binding in astrocytes elicits schizophrenia-like behaviors in mice. However, an association of neuronal SR with DISC1 remains elusive. Here we report that SR associates with DISC1 and its agglomerates in cortical neurons, which can be modulated by NMDAR activity. Endogenous SR colocalizes with DISC1 large agglomerates in the soma and with smaller puncta in the nucleus and dendrites of cortical neurons. Co-immunoprecipitation assays demonstrate SR interaction with DISC1 in cortical neuronal lysates, suggesting the physiological presence of functional SR-DISC1 complexes in neurons. Moreover, exogenous d-Serine application significantly increases the interaction of SR with DISC1, the number of DISC1-SR large agglomerates and the levels of DISC1 agglomerated form along with SR in the triton-insoluble pellet fraction, whereas application of glycine with a glycine transporter inhibitor fails to increase their interactions, abundance of DISC1-SR large agglomerates and levels of DISC1 agglomerated form. This increase by d-Serine application is blocked by 7-chlorokynurenic acid, a specific antagonist at the glycine site of NMDARs, suggesting mediation through NMDARs. Our findings thus demonstrate neuronal SR association with DISC1 and its agglomerates, which can be modulated by d-Serine, thereby validating a novel neuronal SR-DISC1 complex responsive to NMDAR activation and providing a molecular mechanism by which pathways implicated in schizophrenia converge.


Assuntos
Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Racemases e Epimerases/metabolismo , Esquizofrenia/metabolismo , Animais , Núcleo Celular/metabolismo , Dendritos/metabolismo , Imunoprecipitação , Camundongos Endogâmicos C57BL , Cultura Primária de Células
7.
Dis Model Mech ; 10(12): 1529-1538, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259026

RESUMO

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model.


Assuntos
Cerebelo/patologia , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Sinapses/metabolismo , Sinapses/patologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Envelhecimento/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação ao Ferro/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Células de Purkinje/ultraestrutura , Sinapses/ultraestrutura , Frataxina
8.
Dis Model Mech ; 10(11): 1343-1352, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125827

RESUMO

Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Biogênese de Organelas , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Transporte de Elétrons , Proteínas de Ligação ao Ferro/metabolismo , Camundongos Knockout , Subunidades Proteicas/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA