Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Air Soil Pollut ; 234(3): 202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938148

RESUMO

The release of tetracycline hydrochloride (TCH) and methylene blue (MB) dye into the aquatic system uncontrollably caused major environmental and health problems; hence, their prevention required serious attention. Adsorption process is now being researched in order to increase adsorption efficiency and reprocess to alleviate environmental issues. The use of magnetic nanoparticle as an adsorbent for wastewater treatment has a lot of prospective. A magnetic iron oxide nanoparticle surface modified by Vasaka (Justicia adhatoda) leaf extract (JA-MIONs) is used to give a fast removal approach for MB dye and TCH antibiotics. Dynamic light scattering, UV-Vis and band gap measurement, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy were operated to analyse the formation and size of these magnetic nanoparticles. The impacts of different factors such as contact time (30-150 min), adsorbate concentration (10-50 mg/L), pH (4-10), and adsorbent dose (2-10 mg) were explored. Adsorption kinetics and isotherms show that it follows the pseudo-first-order kinetic and the Freundlich isotherm, with maximum adsorption capacities of 76.92 mg/g for MB and 200 mg/g for TCH at 298 K. The reusability of the JA-MIONs eventually exhibited a decline in the adsorption percentage of MB and TCH after five and four times respectively. After the desorption-adsorption cycles, this adsorbent continued to exhibit significant adsorption capacity. This investigation furnished the significant reference data for the synthesis of JA-MIONs as a novel and auspicious adsorbent for the industrial clean-up of toxic dyes and heavily used antibiotics from water.

2.
Water Sci Technol ; 85(12): 3370-3395, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35771052

RESUMO

Water contamination has turned into one of the most serious issues in the world. Nanomaterials are proficient to carry away heavy metals, organic and inorganic dyes, pesticides, and small molecules from polluted water. In this regard, nanoparticles have gained much attention due to their extraordinary properties compared to bulk materials. Metal oxide nanoparticles and nanocomposites have several advantages such as elevated surface area, low concentration, easily separable after treatment and so on. Among many feasible techniques, the adsorption process is one of the most useful techniques for removing heavy ions and dyes from wastewater and has gained much attention from researchers. Several studies on metal oxide nanoparticles and their use in wastewater treatment have been published in the literature. This chapter gives an outline about five metal oxide based nanomaterials and nanocomposites as well as their applications in water pollution removal where the efficiency, limits and favourable circumstances are compared and explored. This article surely helps to gather information about some metal oxide nanoparticles and nanocomposites in wastewater treatment by the adsorption technique. In this review article, we primarily focused on five metal oxide nanoparticles and some of their recent applications published in the last two years.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes , Metais Pesados/análise , Compostos Orgânicos , Óxidos , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
Nanoscale ; 13(19): 8864-8874, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33949417

RESUMO

Recently, several types of lead halide perovskites have been actively researched for resistive switching (RS) memory or artificial synaptic devices due to their current-voltage hysteresis along with the feasibility of fabrication, low-temperature processability and superior charge mobility. However, the toxicity and environmental pollution potential of lead halide perovskites severely restrict their large-scale commercial prospects. In the present work, the environmentally friendly and uniform CsSnCl3 perovskite films are introduced to act as an active layer in the flexible memristors. Ag/CsSnCl3/ITO devices demonstrate bipolar RS with excellent electrical properties such as forming free characteristics, good uniformity, low operating voltages, a high ON/OFF ratio (102) and a long retention time (>104 s). The RS mechanism has been well explained in the outline of electric field-induced formation and rupture of Ag filaments in the CsSnCl3 layer. The metallic nature of the conducting filament has been further confirmed by temperature-dependent variation of low and high resistance states. Additionally, various pulse measurements have been carried out to mimic some of the basic synaptic functions including postsynaptic current, paired-pulse facilitation, long-term potentiation and long-term depression under normal as well as bending conditions. Our work provides the opportunity for exploring artificial synapses based on lead-free halide perovskites for the development of next-generation flexible electronics.

4.
FEMS Microbiol Lett ; 367(19)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32975580

RESUMO

The ecology of aerobic microorganisms is never explored in marine oxygen minimum zone (OMZ) sediments. Here we reveal aerobic bacterial communities along ∼3 m sediment-horizons of the eastern Arabian Sea OMZ. Sulfide-containing sediment-cores retrieved from 530 mbsl (meters beneath the sea-level) and 580 mbsl were explored at 15-30 cm intervals, using metagenomics, pure-culture-isolation, genomics and metatranscriptomics. Genes for aerobic respiration, and oxidation of methane/ammonia/alcohols/thiosulfate/sulfite/organosulfur-compounds, were detected in the metagenomes from all 25 sediment-samples explored. Most probable numbers for aerobic chemolithoautotrophs and chemoorganoheterotrophs at individual sample-sites were up to 1.1 × 107 (g sediment)-1. The sediment-sample collected from 275 cmbsf (centimeters beneath the seafloor) of the 530-mbsl-core yielded many such obligately aerobic isolates belonging to Cereibacter, Guyparkeria, Halomonas, Methylophaga, Pseudomonas and Sulfitobacter which died upon anaerobic incubation, despite being provided with all possible electron acceptors and fermentative substrates. High percentages of metatranscriptomic reads from the 275 cmbsf sediment-sample, and metagenomic reads from all 25 sediment-samples, matched the isolates' genomic sequences including those for aerobic metabolisms, genetic/environmental information processing and cell division, thereby illustrating the bacteria's in-situ activity, and ubiquity across the sediment-horizons, respectively. The findings hold critical implications for organic carbon sequestration/remineralization, and inorganic compounds oxidation, within the sediment realm of global marine OMZs.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Oxigênio/metabolismo , Aerobiose , Bactérias/classificação , Oceanos e Mares
5.
Sci Rep ; 10(1): 5917, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246033

RESUMO

Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga's geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga's microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga's geomicrobiology highlights the possibility that the system's kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.


Assuntos
Extremófilos/genética , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Microbiota/genética , Minerais/química , Extremófilos/isolamento & purificação , Sedimentos Geológicos/química , Temperatura Alta , Filogenia
6.
Comput Biol Chem ; 80: 206-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981103

RESUMO

All cultivated members of the phylum Chlorobi are classified under the two classes Chlorobia and Ignavibacteria. The recently-reported, uncultivated genome-species of Chlorobi have not suggested any alteration in the dichotomy of the two classes, but have hypothesized the existence of a distinct, aerobic and photoheterotrophic, order/family level lineage within Chlorobia, which otherwise was considered to be a monophyletic group of anaerobic sulfur-photolithoautotrophs. Here we report the discovery of a novel population genome bin (named Chlorobi-445) from the combined metagenomes of three spatially-contiguous but visually-distinct microbial mats growing along the 65-41 °C hydrothermal gradient of a boron-rich microbialite spring located in the Puga geothermal area of Eastern Ladakh, India. 1.3, 8.2 and 3.8% metagenomic reads from the mat communities located at 65 °C, 52 °C and 41 °C sample-sites respectively, were found to map-back to the 2,809,852 bp genome of Chlorobi-445. Phylogenomically, and therefore in terms of potential metabolic attributes, Chlorobi-445 showed close relationship with Ca. Thermochlorobacter aerophilum. Gene content suggested Chlorobi-445 to be an aerobic photoorganoheterotroph. Although this new lineage encodes all the proteins necessary for the biosynthesis of bacteriochlorophylls and the photosynthetic reaction centre, it is potentially devoid of genes concerned with lithotrophic sulfur oxidation and carbon-fixation. Individual Chlorobi phylogenies based on the sequence similarities of 16S rRNA genes, 22 ribosomal proteins, and 56 conserved marker-proteins that are encoded from single-copy genes, unanimously suggested that the class Chlorobia encompasses two major branches/clades. Whereas the Clade-I is a homogeneous cluster of culturable, anaerobic sulfur-/iron-oxidizing photolithoautotrophs, Clade-II harbors (i) Chloroherpeton species, and (ii) uncultivated aerobic photoheterotrophs such as Chlorobi-445, Chlorobium sp. GBChlB &Ca. T. aerophilum, in its two sub-clades. Distribution of bioenergetic attributes over the different branches of Chlorobi, together with the aerobic chemoorganoheterotrophic nature of the deepest-branching genome-species NICIL-2, indicated that the early Chlorobi were aerobic chemoorganoheterotrophs, while anaerobicity, phototrophy, lithotrophy, and autotrophy were all potentially added in the course of evolution.


Assuntos
Chlorobi/classificação , Chlorobi/genética , Metagenoma , Metagenômica/métodos , Filogenia , Proteínas de Bactérias/genética
7.
Sci Rep ; 5: 12179, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184838

RESUMO

To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound's western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 "seed-community" split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community's receptiveness towards immigrants, were the key qualities that ensured the GMMC's sustenance amidst habitat degradation and dispersal to discrete environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA