Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; : 104256, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876254

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous disease, in that a multitude of oncogenic drivers and chromosomal abnormalities have been identified and associated with the leukemic transformation of myeloid blasts. However, little is known as to how individual mutations influence the interaction between the immune system and AML cells and the efficacy of the immune system in AML disease control. In this review, we will discuss how AML cells potentially activate the immune system and what evidence there is to support the role of the immune system in controlling this disease. We will specifically examine the importance of antigen presentation in fostering an effective anti-AML immune response, explore the disruption of immune responses during AML disease progression, and discuss the emerging role of the oncoprotein MYC in driving immune suppression in AML.

2.
Nat Cancer ; 5(1): 47-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904045

RESUMO

Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Oligonucleotídeos , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Ácidos Graxos
3.
Leukemia ; 37(4): 741-750, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739348

RESUMO

Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer.


Assuntos
Leucemia Mieloide Aguda , Animais , Camundongos , Modelos Animais de Doenças , Tirosina Quinase 3 Semelhante a fms/genética , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos Transgênicos , Mutação
4.
Leukemia ; 37(1): 143-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400926

RESUMO

Chemotherapy-resistant acute myeloid leukemia (AML), frequently driven by clonal evolution, has a dismal prognosis. A genome-wide CRISPR knockout screen investigating resistance to doxorubicin and cytarabine (Dox/AraC) in human AML cell lines identified gene knockouts involving AraC metabolism and genes that regulate cell cycle arrest (cyclin dependent kinase inhibitor 2A (CDKN2A), checkpoint kinase 2 (CHEK2) and TP53) as contributing to resistance. In human AML cohorts, reduced expression of CDKN2A conferred inferior overall survival and CDKN2A downregulation occurred at relapse in paired diagnosis-relapse samples, validating its clinical relevance. Therapeutically targeting the G1S cell cycle restriction point (with CDK4/6 inhibitor, palbociclib and KAT6A inhibitor, WM-1119, to upregulate CDKN2A) synergized with chemotherapy. Additionally, direct promotion of apoptosis with venetoclax, showed substantial synergy with chemotherapy, overcoming resistance mediated by impaired cell cycle arrest. Altogether, we identify defective cell cycle arrest as a clinically relevant contributor to chemoresistance and identify rationally designed therapeutic combinations that enhance response in AML, potentially circumventing chemoresistance.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ciclo Celular , Citarabina/farmacologia , Citarabina/uso terapêutico , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral
5.
Malar J ; 21(1): 49, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172826

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the "parasite clearance curve", has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation. METHODS: In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine were compared against sodium artesunate in mice infected with Plasmodium berghei (strain ANKA). To measure each compound's capacity for pRBC removal in vivo, flow cytometric monitoring of a single cohort of fluorescently-labelled pRBC was employed, and combined with ex vivo parasite culture to assess parasite maturation and replication. RESULTS: These three compounds were found to be similarly efficacious in controlling established infection by reducing overall parasitaemia. While sodium artesunate acted relatively consistently across the life-stages, single-dose SJ733 elicited a biphasic effect, triggering rapid, partly phagocyte-dependent removal of trophozoites and schizonts, followed by arrest of residual ring-stages. In contrast, pyronaridine abrogated maturation of younger parasites, with less pronounced effects on mature parasites, while modestly increasing pRBC removal. CONCLUSIONS: Anti-malarials SJ733 and pyronaridine, though similarly efficacious in reducing overall parasitaemia in mice, differed markedly in their capacity to arrest replication and remove pRBC from circulation. Thus, similar parasite clearance curves can result for anti-malarials with distinct capacities to inhibit, kill and clear parasites.


Assuntos
Antimaláricos , Malária , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Naftiridinas
6.
Nat Immunol ; 21(12): 1597-1610, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046889

RESUMO

The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica , Malária/imunologia , Plasmodium/imunologia , Transcriptoma , Transferência Adotiva , Animais , Antimaláricos/farmacologia , Biomarcadores , Cromatina/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Malária/parasitologia , Malária/terapia , Camundongos , Plasmodium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA