Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(7): e1012335, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038049

RESUMO

The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.

2.
Microbiol Spectr ; : e0062824, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874395

RESUMO

The human polyomavirus, JCPyV, establishes a lifelong persistent infection in the peripheral organs of a majority of the human population worldwide. Patients who are immunocompromised due to underlying infections, cancer, or to immunomodulatory treatments for autoimmune disease are at risk for developing progressive multifocal leukoencephalopathy (PML) when the virus invades the CNS and infects macroglial cells in the brain parenchyma. It is not yet known how the virus enters the CNS to cause disease. The blood-choroid plexus barrier is a potential site of virus invasion as the cells that make up this barrier are known to be infected with virus both in vivo and in vitro. To understand the effects of virus infection on these cells we challenged primary human choroid plexus epithelial cells with JCPyV and profiled changes in host gene expression. We found that viral infection induced the expression of proinflammatory chemokines and downregulated junctional proteins essential for maintaining blood-CSF and blood-brain barrier function. These data contribute to our understanding of how JCPyV infection of the choroid plexus can modulate the host cell response to neuroinvasive pathogens. IMPORTANCE: The human polyomavirus, JCPyV, causes a rapidly progressing demyelinating disease in the CNS of patients whose immune systems are compromised. JCPyV infection has been demonstrated in the choroid plexus both in vivo and in vitro and this highly vascularized organ may be important in viral invasion of brain parenchyma. Our data show that infection of primary choroid plexus epithelial cells results in increased expression of pro-inflammatory chemokines and downregulation of critical junctional proteins that maintain the blood-CSF barrier. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.

3.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239927

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease caused by infection with JC Polyomavirus (JCPyV). Despite the identification of the disease and isolation of the causative pathogen over fifty years ago, no antiviral treatments or prophylactic vaccines exist. Disease onset is usually associated with immunosuppression, and current treatment guidelines are limited to restoring immune function. This review summarizes the drugs and small molecules that have been shown to inhibit JCPyV infection and spread. Paying attention to historical developments in the field, we discuss key steps of the virus lifecycle and antivirals known to inhibit each event. We review current obstacles in PML drug discovery, including the difficulties associated with compound penetrance into the central nervous system. We also summarize recent findings in our laboratory regarding the potent anti-JCPyV activity of a novel compound that antagonizes the virus-induced signaling events necessary to establish a productive infection. Understanding the current panel of antiviral compounds will help center the field for future drug discovery efforts.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Infecções por Polyomavirus , Humanos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Vírus JC/fisiologia , Transdução de Sinais
4.
mBio ; 14(2): e0358322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786589

RESUMO

JC polyomavirus (JCPyV) is a ubiquitous, double-stranded DNA virus that causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. Current treatments for PML are limited to immune reconstitution, and no effective antivirals exist. In this report, we show that the oxindole GW-5074 (3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodoindolin-2-one) reduces JCPyV infection in primary and immortalized cells. This compound potently inhibits virus spread, which suggests that it could control infection in PML patients. We demonstrate that GW-5074 inhibits endogenous ERK phosphorylation, and that JCPyV infection in GW-5074-treated cells cannot be rescued with ERK agonists, which indicates that the antiviral mechanism may involve its antagonistic effects on MAPK-ERK signaling. Importantly, GW-5074 exceeds thresholds of common pharmacological parameters that identify promising compounds for further development. This MAPK-ERK antagonist warrants further investigation as a potential treatment for PML. IMPORTANCE Human polyomaviruses, such as JCPyV and BKPyV, cause significant morbidity and mortality in immunocompromised or immunomodulated patients. There are no treatments for polyomavirus-induced diseases other than restoration of immune function. We discovered that the oxindole GW-5074 potently inhibits infection by both JCPyV and BKPyV. Further optimization of this compound could result in the development of antiviral therapies for polyomavirus-induced diseases.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Infecções por Polyomavirus , Polyomavirus , Humanos , Oxindóis/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/genética , Vírus JC/genética , Sistema de Sinalização das MAP Quinases , Antivirais
5.
J Extracell Biol ; 1(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36688929

RESUMO

JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins.

6.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575975

RESUMO

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Assuntos
Crotonatos/farmacologia , Vírus de DNA/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Nitrilas/farmacologia , Toluidinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/virologia , Vírus de DNA/patogenicidade , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/virologia , Neuroglia/virologia , Viroses/tratamento farmacológico , Viroses/genética , Viroses/virologia
7.
Virology ; 548: 17-24, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838939

RESUMO

The demyelinating disease progressive multifocal leukoencephalopathy (PML) is caused by the human polyomavirus, JCPyV, under conditions of prolonged immunosuppression. Initial infection is asymptomatic, and the virus establishes lifelong persistence in the host. Following the loss of immune surveillance, the virus can traffic to the central nervous system and infect oligodendrocytes to cause demyelination and PML. The mechanisms involved in glial cell infection are not completely understood. In a screen for N-glycosylated proteins that influence JCPyV pathology, we identified Adipocyte Plasma Membrane Associated Protein (APMAP) as a host cell modulator of JCPyV infection. The removal of APMAP by small interfering siRNA as well as by CRISPR-Cas9 gene editing resulted in a significant decrease in JCPyV infection. Exogenous expression of APMAP in APMAP knockout cell lines rescued susceptibility to infection. These data suggest that virus infection of glial cells is dependent on APMAP.


Assuntos
Vírus JC/fisiologia , Neuroglia/metabolismo , Infecções por Polyomavirus/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Vírus JC/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Neuroglia/virologia , Oligodendroglia/metabolismo , Oligodendroglia/virologia , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia
8.
PLoS Pathog ; 16(3): e1008371, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130281

RESUMO

The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy (PML) in immunosuppressed and immunomodulated patients. Initial infection with JCPyV is common and the virus establishes a long-term persistent infection in the urogenital system of 50-70% of the human population worldwide. A major gap in the field is that we do not know how the virus traffics from the periphery to the brain to cause disease. Our recent discovery that human choroid plexus epithelial cells are fully susceptible to virus infection together with reports of JCPyV infection of choroid plexus in vivo has led us to hypothesize that the choroid plexus plays a fundamental role in this process. The choroid plexus is known to relay information between the blood and the brain by the release of extracellular vesicles. This is particularly important because human macroglia (oligodendrocytes and astrocytes), the major targets of virus infection in the central nervous system (CNS), do not express the known attachment receptors for the virus and do not bind virus in human tissue sections. In this report we show that JCPyV infected choroid plexus epithelial cells produce extracellular vesicles that contain JCPyV and readily transmit the infection to human glial cells. Transmission of the virus by extracellular vesicles is independent of the known virus attachment receptors and is not neutralized by antisera directed at the virus. We also show that extracellular vesicles containing virus are taken into target glial cells by both clathrin dependent endocytosis and macropinocytosis. Our data support the hypothesis that the choroid plexus plays a fundamental role in the dissemination of virus to brain parenchyma.


Assuntos
Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Vírus JC/metabolismo , Leucoencefalopatia Multifocal Progressiva/metabolismo , Neuroglia/metabolismo , Receptores Virais/metabolismo , Linhagem Celular Transformada , Plexo Corióideo/patologia , Plexo Corióideo/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/virologia , Humanos , Leucoencefalopatia Multifocal Progressiva/patologia , Neuroglia/patologia , Neuroglia/virologia
9.
Cell Rep ; 27(7): 1960-1966.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091436

RESUMO

JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by ß-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of ß-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin.


Assuntos
Vírus JC/genética , Receptores 5-HT2 de Serotonina/genética , Receptores 5-HT2 de Serotonina/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Internalização do Vírus , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus JC/patogenicidade , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
10.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967463

RESUMO

The endemic human JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy in immune-suppressed patients. The mechanisms of virus infection in vivo are not understood because the major target cells for virus in the brain do not express virus receptors and do not bind virus. We found that JCPyV associates with extracellular vesicles (EVs) and can infect target cells independently of virus receptors. Virus particles were found packaged inside extracellular vesicles and attached to the outer side of vesicles. Anti-JCPyV antisera reduced infection by purified virus but had no effect on infection by EV-associated virus. Treatment of cells with the receptor-destroying enzyme neuraminidase inhibited infection with purified virus but did not inhibit infection by EV-associated virus. Mutant pseudoviruses defective in sialic acid receptor binding could not transduce cells as purified pseudovirions but could do so when associated with EVs. This alternative mechanism of infection likely plays a critical role in the dissemination and spread of JCPyV both to and within the central nervous system.IMPORTANCE JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML), a severe and often fatal neurodegenerative disease in immunocompromised or immunomodulated patients. The mechanisms responsible for initiating infection in susceptible cells are not completely known. The major attachment receptor for the virus, lactoseries tetrasaccharide c (LSTc), is paradoxically not expressed on oligodendrocytes or astrocytes in human brain, and virus does not bind to these cells. Because these are the major cell types targeted by the virus in the brain, we hypothesized that alternative mechanisms of infection must be responsible. Here we provide evidence that JCPyV is packaged in extracellular vesicles from infected cells. Infection of target cells by vesicle-associated virus is not dependent on LSTc and is not neutralized by antisera directed against the virus. This is the first demonstration of a polyomavirus using extracellular vesicles as a means of transmission.


Assuntos
Vesículas Extracelulares/virologia , Vírus JC/fisiologia , Internalização do Vírus , Linhagem Celular , Humanos
11.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437972

RESUMO

JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML.IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood-cerebrospinal fluid barrier, the choroid plexus and leptomeninges are also poised to play roles in virus invasion of brain parenchyma, where infection of macroglial cells leads to the development of progressive multifocal leukoencephalopathy, a severely debilitating and often fatal infection. In this paper we show for the first time that primary choroid plexus epithelial cells and meningeal cells are infected by JCPyV, lending support to the association of JCPyV with meningoencephalopathies. These data also suggest that JCPyV could use these cells as reservoirs for the subsequent invasion of brain parenchyma.


Assuntos
Plexo Corióideo , Células Epiteliais , Vírus JC/metabolismo , Leucoencefalopatia Multifocal Progressiva , Meninges , Ritanserina/farmacologia , Linhagem Celular , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Plexo Corióideo/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/metabolismo , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Meninges/metabolismo , Meninges/patologia , Meninges/virologia
12.
Annu Rev Virol ; 4(1): 349-367, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28637388

RESUMO

In 1971, the first human polyomavirus was isolated from the brain of a patient who died from a rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. The virus was named JC virus after the initials of the patient. In that same year a second human polyomavirus was discovered in the urine of a kidney transplant patient and named BK virus. In the intervening years it became clear that both viruses were widespread in the human population but only rarely caused disease. The past decade has witnessed the discovery of eleven new human polyomaviruses, two of which cause unusual and rare cancers. We present an overview of the history of these viruses and the evolution of JC polyomavirus-induced progressive multifocal leukoencephalopathy over three different epochs. We review what is currently known about JC polyomavirus, what is suspected, and what remains to be done to understand the biology of how this mostly harmless endemic virus gives rise to lethal disease.


Assuntos
Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/virologia , Polyomavirus/isolamento & purificação , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Doenças Autoimunes/virologia , Vírus BK/isolamento & purificação , Vírus BK/patogenicidade , Humanos , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/etiologia , Camundongos , Esclerose Múltipla/complicações , Polyomavirus/classificação , Polyomavirus/patogenicidade , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia
13.
Am J Pathol ; 185(8): 2246-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056932

RESUMO

The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6-linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent.


Assuntos
Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Vírus JC , Rim/metabolismo , Polissacarídeos/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligodendroglia/metabolismo
14.
J Clin Invest ; 124(12): 5103-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25401466

RESUMO

JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease in humans. The disease, once considered fatal, is now managed with immune reconstitution therapy; however, surviving patients remain severely debilitated. Until now, there has been no animal model to study JCV in the brain, and research into treatment has relied on cell culture systems. In this issue of the JCI, Kondo and colleagues developed a mouse model in which human glial cells are engrafted into neonatal mice that are both immunodeficient and deficient for myelin basic protein. When challenged intracerebrally with JCV, these mice exhibit some of the characteristics of PML. The establishment of this chimeric mouse model is a significant advance toward understanding the mechanism of JCV pathogenesis and the identification of drugs to treat or prevent the disease.


Assuntos
Astrócitos/imunologia , Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Transplante de Células-Tronco , Células-Tronco/imunologia , Quimeras de Transplante/imunologia , Replicação Viral/imunologia , Animais , Feminino , Humanos , Masculino
15.
J Virol ; 87(24): 13490-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089568

RESUMO

The human JC polyomavirus (JCPyV) causes the rapidly progressing demyelinating disease progressive multifocal leukoencephalopathy (PML). The disease occurs most often in individuals with AIDS but also occurs in individuals receiving immunomodulatory therapies for immune-related diseases such as multiple sclerosis. JCPyV infection of host cells requires the pentasaccharide lactoseries tetrasaccharide c (LSTc) and the serotonin receptor 5-hydroxytryptamine (5-HT) receptor 5-HT2AR. While LSTc is involved in the initial attachment of virus to cells via interactions with VP1, the mechanism by which 5-HT2AR contributes to infection is not clear. To further define the roles of serotonin receptors in infection, HEK293A cells, which are poorly permissive to JCPyV, were transfected with 14 different isoforms of serotonin receptor. Only 5-HT2 receptors were found to support infection by JCPyV. None of the other 11 isoforms of serotonin receptor supported JCPyV infection. Expression of 5-HT2 receptors did not increase binding of JCPyV to cells, but this was not unexpected, given that the cells uniformly expressed the major attachment receptor, LSTc. Infection of these cells remained sensitive to inhibition with soluble LSTc, confirming that LSTc recognition is required for JCPyV infection. Virus internalization into HEK293A cells was significantly and specifically enhanced when 5HT2 receptors were expressed. Taken together, these data confirm that the carbohydrate LSTc is the attachment receptor for JCPyV and that the type 2 serotonin receptors contribute to JCPyV infection by facilitating entry.


Assuntos
Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Internalização do Vírus , Células HEK293 , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2C de Serotonina/genética , Serotonina/metabolismo
16.
J Virol ; 84(19): 9677-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660194

RESUMO

JC virus (JCV) is a human polyomavirus and the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection of host cells is dependent on interactions with cell surface asparagine (N)-linked sialic acids and the serotonin 5-hydroxytryptamine(2A) receptor (5-HT(2A)R). The 5-HT(2A)R contains five potential N-linked glycosylation sites on the extracellular N terminus. Glycosylation of other serotonin receptors is essential for expression, ligand binding, and receptor function. Also, glycosylation of cellular receptors has been reported to be important for JCV infection. Therefore, we hypothesized that the 5-HT(2A)R N-linked glycosylation sites are required for JCV infection. Treatment of 5-HT(2A)R-expressing cells with tunicamycin, an inhibitor of N-linked glycosylation, reduced JCV infection. Individual mutation of each of the five N-linked glycosylation sites did not affect the capacity of 5-HT(2A)R to support JCV infection and did not alter the cell surface expression of the receptor. However, mutation of all five N-linked glycosylation sites simultaneously reduced the capacity of 5-HT(2A)R to support infection and altered the cell surface expression. Similarly, tunicamycin treatment reduced the cell surface expression of 5-HT(2A)R. Mutation of all five N-linked glycosylation sites or tunicamycin treatment of cells expressing wild-type 5-HT(2A)R resulted in an altered electrophoretic mobility profile of the receptor. Treatment of cells with PNGase F, to remove N-linked oligosaccharides from the cell surface, did not affect JCV infection in 5-HT(2A)R-expressing cells. These data affirm the importance of 5-HT(2A)R as a JCV receptor and demonstrate that the sialic acid component of the receptor is not directly linked to 5-HT(2A)R.


Assuntos
Vírus JC/patogenicidade , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Virais/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Primers do DNA/genética , Glicosilação/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/metabolismo , Mutagênese Sítio-Dirigida , Ácido N-Acetilneuramínico/química , Neuraminidase/farmacologia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/farmacologia , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/genética , Receptores Virais/química , Receptores Virais/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Tunicamicina/farmacologia
17.
Pediatr Res ; 68(1): 57-62, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375852

RESUMO

We determined the time-specific effects of FasL overexpression on perinatal alveolar type II cell growth kinetics. To achieve temporal overexpression of respiratory epithelium-specific FasL expression, tetracycline inducible CCSP-rtTA/FasL-TetOp transgenic mice were given doxycycline (Dox) from gestational d 14 (E14) to E19 (antenatal treatment group), from postnatal d 1 (P1) to P7 (postnatal group), or from E14 to P7 (combined antenatal and postnatal group). Antenatal Dox administration induced an increase of pulmonary FasL mRNA levels in double transgenic animals up to >300-fold over single transgenic littermate controls, associated with massive fetal respiratory epithelial apoptosis and excessive postnatal lethality. Although animals from the combined antenatal/postnatal Dox treatment group continued to display evidence of increased apoptosis, there was a paradoxical increase in alveolar type II cell proliferation, resulting in a net increase in type II cell density, elevated pulmonary surfactant protein C levels and improved postnatal survival. Postnatal Dox administration was also associated with increased type II cell density, although FasL up-regulation was more variable. In conclusion, these results, and our previous studies, suggest that FasL signaling has dual timing-dependent proapoptotic and proproliferative effects on postcanalicular type II cell kinetics.


Assuntos
Proteína Ligante Fas/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Proteína Ligante Fas/genética , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida
18.
Virus Res ; 149(1): 128-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20122973

RESUMO

Carcinoid syndrome is caused by the unregulated secretion of bioactive amines from neuroendocrine tumors arising primarily in the gastrointestinal tract and lungs. The incidence of carcinoid syndrome is 1-2/100,000 and the syndrome is thought to be increasing. Carcinoid tumors are relatively slow growing but can become highly metastatic. Currently, there is no effective therapy to inhibit cell proliferation or metastasis of neuroendocrine tumor (NET) disease. Polyomaviruses are a family of viruses that are able to transform cells and promote tumor formation. In this study, the polyomaviruses SV40, JCV, and BKV were used to assess the ability of polyomaviruses to productively infect a range of human carcinoid cell lines. Infection was assessed by the immunofluorescence detection of T antigen and V antigen. Viruses and cell lines that exhibited productive infections were subsequently assayed by FACS analysis for cell binding and dual promoter luciferase assay for early and late promoter activity. Most carcinoid cell lines were not susceptible to infection by polyomaviruses. However, BKV efficiently infected the pulmonary carcinoid H727 cell line but did not infect a control, non-carcinoid lung cell line (A549). BKV was found to bind to both the susceptible H727 cells and to the non-susceptible A549 cells but viral genes were only efficiently expressed in the H727 cell line. The data demonstrate that BKV can infect human pulmonary carcinoid cells. Infection does not seem to be solely mediated by the virus' ability to bind to cells, as the virus will also bind to non-carcinoid control cells. Both early and late gene expression are supported by the pulmonary carcinoid cells.


Assuntos
Vírus BK/patogenicidade , Tumor Carcinoide/virologia , Neoplasias Pulmonares/virologia , Antígenos Virais de Tumores/biossíntese , Vírus BK/crescimento & desenvolvimento , Linhagem Celular Tumoral , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Vírus JC/crescimento & desenvolvimento , Vírus JC/patogenicidade , Luciferases/biossíntese , Luciferases/genética , Vírus 40 dos Símios/crescimento & desenvolvimento , Vírus 40 dos Símios/patogenicidade , Proteínas Estruturais Virais/biossíntese , Ligação Viral , Replicação Viral
19.
Am J Pathol ; 173(1): 42-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18535181

RESUMO

Premature infants are at risk for bronchopulmonary dysplasia, a complex condition characterized by impaired alveolar development and increased alveolar epithelial apoptosis. The functional involvement of pulmonary apoptosis in bronchopulmonary dysplasia- associated alveolar disruption remains undetermined. The aims of this study were to generate conditional lung-specific Fas-ligand (FasL) transgenic mice and to determine the effects of FasL-induced respiratory epithelial apoptosis on alveolar remodeling in postcanalicular lungs. Transgenic (TetOp)(7)-FasL responder mice, generated by pronuclear microinjection, were bred with Clara cell secretory protein (CCSP)-rtTA activator mice. Doxycycline (Dox) was administered from embryonal day 14 to postnatal day 7, and lungs were studied between embryonal day 19 and postnatal day 21. Dox administration induced marked respiratory epithelium-specific FasL mRNA and protein up-regulation in double-transgenic CCSP-rtTA(+)/(TetOp)(7)-FasL(+) mice compared with single-transgenic CCSP-rtTA(+) littermates. The Dox-induced FasL up-regulation was associated with dramatically increased apoptosis of alveolar type II cells and Clara cells, disrupted alveolar development, decreased vascular density, and increased postnatal lethality. These data demonstrate that FasL-induced alveolar epithelial apoptosis during postcanalicular lung remodeling is sufficient to disrupt alveolar development after birth. The availability of inducible lung-specific FasL transgenic mice will facilitate studies of the role of apoptosis in normal and disrupted alveologenesis and may lead to novel therapeutic approaches for perinatal and adult pulmonary diseases characterized by dysregulated apoptosis.


Assuntos
Apoptose/fisiologia , Células Epiteliais/patologia , Proteína Ligante Fas/metabolismo , Pneumopatias/patologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Sequência de Bases , Western Blotting , Modelos Animais de Doenças , Proteína Ligante Fas/genética , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Pneumopatias/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes
20.
BMC Physiol ; 8: 4, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18312674

RESUMO

BACKGROUND: Myocardial hypoxic-ischemic injury is the cause of significant morbidity and mortality worldwide. The cardiomyocyte response to hypoxic-ischemic injury is known to include changes in cell cycle regulators. The cyclin-dependent kinase inhibitor p57Kip2 is involved in cell cycle control, differentiation, stress signaling and apoptosis. In contrast to other cyclin-dependent kinase inhibitors, p57Kip2 expression diminishes during postnatal life and is reactivated in the adult heart under conditions of cardiac stress. Overexpression of p57Kip2 has been previously shown to prevent apoptotic cell death in vitro by inhibiting stress-activated kinases. Therefore, we hypothesized that p57Kip2 has a protective role in cardiomyocytes under hypoxic conditions. To investigate this hypothesis, we created a transgenic mouse (R26loxpTA-p57k/+) that expresses p57Kip2 specifically in cardiac tissue under the ventricular cardiomyocyte promoter Mlc2v. RESULTS: Transgenic mice with cardiac specific overexpression of p57Kip2 are viable, fertile and normally active and their hearts are morphologically indistinguishable from the control hearts and have similar heart weight/body weight ratio. The baseline functional parameters, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LVdp/dtmax, heart rate (HR) and rate pressure product (RPR) were not significantly different between the different groups as assessed by the Langendorff perfused heart preparation. However, after subjecting the heart ex vivo to 30 minutes of ischemia-reperfusion injury, the p57Kip2 overexpressing hearts demonstrated preserved cardiac function compared to control mice with higher left ventricular developed pressure (63 +/- 15 vs 30 +/- 6 mmHg, p = 0.05), rate pressure product (22.8 +/- 4.86 vs 10.4 +/- 2.1 x 103bpm x mmHg, p < 0.05) and coronary flow (3.5 +/- 0.5 vs 2.38 +/- 0.24 ml/min, p <0.05). CONCLUSION: These data suggest that forced cardiac expression of p57Kip2 does not affect myocardial growth, differentiation and baseline function but attenuates injury from ischemia-reperfusion in the adult mouse heart.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Cardiotônicos/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/genética , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA