Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565538

RESUMO

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Assuntos
Multiômica , Viroses , Vírus , Animais , Humanos , Camundongos , Perfilação da Expressão Gênica/métodos , Metabolômica , Proteômica/métodos , Viroses/imunologia , Interações Hospedeiro-Patógeno
2.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491227

RESUMO

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Assuntos
Bioensaio , Replicação do DNA , Animais , Cricetinae , Feminino , Humanos , Masculino , Animais Geneticamente Modificados , Mesocricetus , Mutação
3.
Lancet Infect Dis ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38340735

RESUMO

SARS-CoV-2 causes persistent infections in a subset of individuals, which is a major clinical and public health problem that should be prioritised for further investigation for several reasons. First, persistent SARS-CoV-2 infection often goes unrecognised, and therefore might affect a substantial number of people, particularly immunocompromised individuals. Second, the formation of tissue reservoirs (including in non-respiratory tissues) might underlie the pathophysiology of the persistent SARS-CoV-2 infection and require new strategies for diagnosis and treatment. Finally, persistent SARS-CoV-2 replication, particularly in the setting of suboptimal immune responses, is a possible source of new, divergent virus variants that escape pre-existing immunity on the individual and population levels. Defining optimal diagnostic and treatment strategies for patients with persistent virus replication and monitoring viral evolution are therefore urgent medical and public health priorities.

4.
Nat Commun ; 15(1): 1284, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346966

RESUMO

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.


Assuntos
Nanovacinas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Cricetinae , Humanos , Feminino , Enzima de Conversão de Angiotensina 2 , Vacinação , Imunização , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
J Pediatric Infect Dis Soc ; 13(1): 100-104, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38142128

RESUMO

We assessed serum neutralization of Omicron BA.5 in children following SARS-CoV-2 infection during the Delta or Omicron BA.1/BA.2 variant period. Convalescent BA.5 titers were higher following infections during the Omicron BA.1/BA.2 vs Delta variant period, and in vaccinated vs unvaccinated children. Titers against BA.5 did not differ by age group.


Assuntos
COVID-19 , Criança , Humanos , SARS-CoV-2 , Anticorpos Antivirais
6.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808679

RESUMO

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

7.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796612

RESUMO

Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Camundongos , Células T de Memória , COVID-19/prevenção & controle , SARS-CoV-2 , Pulmão
8.
Science ; 382(6666): eadj0070, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797027

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Assuntos
Antígenos Virais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacinas de mRNA/imunologia , Vacinação , Substituição de Aminoácidos
9.
Virus Evol ; 9(2): veac104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692895

RESUMO

Prolonged infections in immunocompromised individuals may be a source for novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, particularly when both the immune system and antiviral therapy fail to clear the infection and enable within-host evolution. Here we describe a 486-day case of SARS-CoV-2 infection in an immunocompromised individual. Following monotherapy with the monoclonal antibody Bamlanivimab, the individual's virus acquired resistance, likely via the earliest known occurrence of Spike amino acid variant E484T. Recently, E484T has arisen again as a derivative of E484A in the Omicron Variant of Concern, supporting the hypothesis that prolonged infections can give rise to novel variants long before they become prevalent in the human population.

10.
J Infect Dis ; 228(Suppl 7): S508-S513, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37578011

RESUMO

Ebola virus (EBOV) induces cell death not only in infected permissive cells but also in nonpermissive, bystander cells by employing different mechanisms. Hydroxycarboxylic acid receptor 2 (HCAR2) has been reported to be involved in apoptotic cell death. We previously reported an increase in the expression of HCAR2-specific mRNA in EBOV-infected individuals with fatal outcomes. Here, we report that infection with an EBOV lacking the VP30 gene (EBOVΔVP30) results in the upregulation of HCAR2 mRNA expression in human hepatocyte Huh7.0 cells stably expressing VP30. Transient overexpression of HCAR2 reduced the viability of Huh7.0 cells and human embryonic kidney cells. Phosphatidylserine externalization and cell membrane permeabilization by HCAR2 overexpression was also observed. Interestingly, coexpression of HCAR2 with EBOV VP40 further reduced cell viability in transfected cells compared to HCAR2 coexpression with other viral proteins. Our data suggest that HCAR2 may contribute to EBOV-induced cell death.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Morte Celular , Ebolavirus/fisiologia , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo
11.
J Infect Dis ; 228(Suppl 7): S514-S521, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562033

RESUMO

Ebola virus (EBOV) is a highly pathogenic virus that encodes 7 multifunctional structural proteins. Multiple host factors have been reported to interact with the EBOV proteins. Here, we found that tripartite motif-containing 14 (TRIM14), an interferon-stimulated gene that mediates cellular signaling pathways associated with type I interferon and inflammatory cytokine production, interacts with EBOV nucleoprotein to enhance interferon-ß (IFN-ß) and nuclear factor-κB (NF-κB) promotor activation. Moreover, TRIM14 overexpression reduced viral replication in an infectious but biologically contained EBOVΔVP30 system by approximately 10-fold without affecting viral protein expression. Furthermore, TRM14-deficient mice were more susceptible to mouse-adapted EBOV infection than wild-type mice. Our data suggest that TRIM14 is a host factor with anti-EBOV activity that limits EBOV pathogenesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Ebolavirus/genética , Interferon Tipo I/metabolismo , Proteínas Virais/metabolismo
12.
Vaccine ; 41(41): 6025-6035, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37635002

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a glycoprotein, expressed on the virion surface, that mediates infection of host cells by directly interacting with host receptors. As such, it is a reasonable target to neutralize the infectivity of the virus. Here we found that a recombinant S protein vaccine adjuvanted with Alhydrogel or the QS-21-like adjuvant Quil-A effectively induced anti-S receptor binding domain (RBD) serum IgG and neutralizing antibody titers in the Syrian hamster model, resulting in significantly low SARS-CoV-2 replication in respiratory organs and reduced body weight loss upon virus challenge. Severe lung inflammation upon virus challenge was also strongly suppressed by vaccination. We also found that the S protein vaccine adjuvanted with Alhydrogel, Quil-A, or an AS03-like adjuvant elicited significantly higher neutralizing antibody titers in mice than did unadjuvanted vaccine. Although the neutralizing antibody titers against the variant viruses B.1.351 and B.1.617.2 declined markedly in mice immunized with wild-type S protein, the binding antibody levels against the variant S proteins were equivalent to those against wild-type S. When splenocytes from the immunized mice were re-stimulated with the S protein in vitro, the induced Th1 or Th2 cytokine levels were not significantly different upon re-stimulation with wild-type S or variant S, suggesting that the T-cell responses against the variants were the same as those against the wild-type virus. Upon Omicron XBB-challenge in hamsters, wild-type S-vaccination with Alhydrogel or AS03 reduced lung virus titers on Day 3, and the Quil-A adjuvanted group showed less body weight loss, although serum neutralizing antibody titers against XBB were barely detected in vitro. Collectively, recombinant vaccines coupled with different adjuvants may be promising modalities to combat new variant viruses by inducing various arms of the immune response.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Camundongos , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Vacinas Sintéticas , Mesocricetus , Anticorpos Neutralizantes , Redução de Peso
13.
Res Sq ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37461652

RESUMO

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.

14.
J Infect Dis ; 228(Suppl 7): S587-S593, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379580

RESUMO

BACKGROUND: Ebola virus (EBOV) is considered among the most dangerous viruses with case fatality rates approaching 90% depending on the outbreak. While several viral proteins (VPs) including VP24, VP35, and the soluble glycoprotein are understood to contribute to virulence, less is known of the contribution of the highly variable mucin-like domain (MLD) of EBOV. Early studies have defined a potential role in immune evasion of the MLD by providing a glycan shield to critical glycoprotein residues tied to viral entry. Nonetheless, little is known as to what direct role the MLD plays in acute EBOV disease (EVD). METHODS: We generated an infectious EBOV clone that lacks the MLD and assessed its virulence in ferrets compared with wild-type (WT) virus. RESULTS: No differences in growth kinetics were observed in vitro, nor were there any differences in time to death, viremia, or clinical picture in ferrets infected with recombinant EBOV (rEBOV)-WT or rEBOV-Δmucin. CONCLUSIONS: The EBOV MLD does not play a critical role in acute pathogenesis of EVD in ferrets.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Mucinas , Virulência , Furões , Glicoproteínas/genética , Glicoproteínas/metabolismo
15.
EBioMedicine ; 93: 104677, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352827

RESUMO

BACKGROUND: Like its predecessors in the XBB family, XBB.1.5 is highly immune evasive from therapeutic monoclonal antibodies and neutralizing antibodies generated by vaccination and/or infection. However, there is a lack of in vivo data on XBB.1.5 in animal models such as Syrian hamsters. METHODS: Syrian hamsters (females) were used to examine airborne transmission along with virus replication of XBB.1.5 in naïve animals and human ACE2 hamsters with pre-existing immunity from a previous infection with Omicron BA.1. Assays were performed to determine neutralizing antibody responses, and virus titers were determined by standard plaque assays. FINDINGS: Unlike earlier Omicron subvariants, such as BA.1 and BA.2, XBB.1.5 transmitted more efficiently in the hamster model. In addition, XBB.1.5 partially escaped BA.1-immunity from a previous infection with XBB.1.5 replicating in the nasal turbinate tissues and to a lesser extend in the lung tissues of previously infected hamsters. INTERPRETATION: Our in vivo data showing better airborne transmissibility of the Omicron subvariant XBB.1.5 than its predecessor, BA.2, in Syrian hamsters will allow researchers to further investigate amino acid substitutions that give XBB.1.5 a fitness advantage over BA.2 in transmission, data that may be important in studies of SARS-CoV-2 transmission in humans. FUNDING: This research is supported by grants from the Center for Research on Influenza Pathogenesis and Transmission (CRIPT; 75N93021C00014), funded by the National Institute of Allergy and Infectious Diseases and by a Research Program on Emerging and Reemerging Infectious Diseases (JP21fk0108552 and JP21fk0108615), a Project Promoting Support for Drug Discovery (JP21nf0101632), the Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125002), and The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA) grant (JP223fa627001) from the Japan Agency for Medical Research and Development.


Assuntos
COVID-19 , Reinfecção , Animais , Feminino , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2 , Anticorpos Neutralizantes , Proteínas Adaptadoras de Transdução de Sinal
16.
J Med Virol ; 95(5): e28788, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212288

RESUMO

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Substituição de Aminoácidos , Antivirais
18.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36862518

RESUMO

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes
19.
Nat Commun ; 14(1): 1620, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959194

RESUMO

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2 , Bioensaio , Replicação do DNA , Índia , Mesocricetus
20.
Database (Oxford) ; 20232023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763096

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities. To collect these data in a consistent fashion and make it publicly available, we established the COVIC database (COVIC-DB, https://covicdb.lji.org/). This database enables systematic analysis and interpretation of this large-scale dataset by providing a comprehensive view of various features such as affinity, neutralization, in vivo protection and effector functions for each antibody. Interactive graphs enable direct comparisons of antibodies based on select functional properties. We demonstrate how the COVIC-DB can be utilized to examine relationships among antibody features, thereby guiding the design of therapeutic antibody cocktails. Database URL  https://covicdb.lji.org/.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA