Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 25(7): 1406-1419, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31481756

RESUMO

The OPRM1 A118G single nucleotide polymorphism (SNP rs1799971) gene variant encoding the N40D µ-opioid receptor (MOR) has been associated with dependence on opiates and other drugs of abuse but its mechanism is unknown. The frequency of G-allele carriers is ~40% in Asians, ~16% in Europeans, and ~3% in African-Americans. With opioid abuse-related deaths rising at unprecedented rates, understanding these mechanisms may provide a path to therapy. Here we generated homozygous N40D subject-specific induced inhibitory neuronal cells (iNs) from seven human-induced pluripotent stem (iPS) cell lines from subjects of European descent (both male and female) and probed the impact of N40D MOR regulation on synaptic transmission. We found that D40 iNs exhibit consistently stronger suppression (versus N40) of spontaneous inhibitory postsynaptic currents (sIPSCs) across multiple subjects. To mitigate the confounding effects of background genetic variation on neuronal function, the regulatory effects of MORs on synaptic transmission were recapitulated in two sets of independently engineered isogenic N40D iNs. In addition, we employed biochemical analysis and observed differential N-linked glycosylation of human MOR N40D. This study identifies neurophysiological and molecular differences between human MOR variants that may predict altered opioid responsivity and/or dependence in this subset of individuals.


Assuntos
Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Sinapses/metabolismo , Linhagem Celular , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores , Masculino , Neurônios/citologia , Receptores Opioides mu/química
2.
Alcohol ; 74: 83-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30087005

RESUMO

Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.


Assuntos
Alcoolismo/etiologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Alcoolismo/genética , Alcoolismo/fisiopatologia , Transtorno Bipolar/etiologia , Humanos , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/etiologia
3.
Technology (Singap World Sci) ; 5(2): 87-97, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28781993

RESUMO

Neurocircuits in the human brain govern complex behavior and involve connections from many different neuronal subtypes from different brain regions. Recent advances in stem cell biology have enabled the derivation of patient-specific human neuronal cells of various subtypes for the study of neuronal function and disease pathology. Nevertheless, one persistent challenge using these human-derived neurons is the ability to reconstruct models of human brain circuitry. To overcome this obstacle, we have developed a compartmentalized microfluidic device, which allows for spatial separation of cell bodies of different human-derived neuronal subtypes (excitatory, inhibitory and dopaminergic) but is permissive to the spreading of projecting processes. Induced neurons (iNs) cultured in the device expressed pan-neuronal markers and subtype specific markers. Morphologically, we demonstrate defined synaptic contacts between selected neuronal subtypes by synapsin staining. Functionally, we show that excitatory neuronal stimulation evoked excitatory postsynaptic current responses in the neurons cultured in a separate chamber.

4.
Sci Rep ; 6: 34341, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698409

RESUMO

Genetic variation in nicotinic receptor alpha 5 (CHRNA5) has been associated with increased risk of addiction-associated phenotypes in humans yet little is known the underlying neural basis. Induced pluripotent stem cells (iPSCs) were derived from donors homozygous for either the major (D398) or the minor (N398) allele of the nonsynonymous single nucleotide polymorphism (SNP), rs16969968, in CHRNA5. To understand the impact of these nicotinic receptor variants in humans, we differentiated these iPSCs to dopamine (DA) or glutamatergic neurons and then tested their functional properties and response to nicotine. Results show that N398 variant human DA neurons differentially express genes associated with ligand receptor interaction and synaptic function. While both variants exhibited physiological properties consistent with mature neuronal function, the N398 neuronal population responded more actively with an increased excitatory postsynaptic current response upon the application of nicotine in both DA and glutamatergic neurons. Glutamatergic N398 neurons responded to lower nicotine doses (0.1 µM) with greater frequency and amplitude but they also exhibited rapid desensitization, consistent with previous analyses of N398-associated nicotinic receptor function. This study offers a proof-of-principle for utilizing human neurons to study gene variants contribution to addiction.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/genética , Células Cultivadas , Perfilação da Expressão Gênica , Variação Genética , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Neurônios/metabolismo
5.
Mol Brain ; 9(1): 51, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27160314

RESUMO

BACKGROUND: Alcohol abuse produces an enormous impact on health, society, and the economy. Currently, there are very limited therapies available, largely due to the poor understanding of mechanisms underlying alcohol use disorders (AUDs) in humans. Oxidative damage of mitochondria and cellular proteins aggravates the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. RESULTS: Here we show that ethanol exposure causes neuroinflammation in both human induced pluripotent stem (iPS) cells and human neural progenitor cells (NPCs). Ethanol exposure for 24 hours or 7 days does not affect the proliferation of iPS cells and NPCs, but primes an innate immune-like response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. This leads to an increase of microtubule-associated protein 1A/1B-light chain 3(+) (LC3B(+)) autophagic puncta and impairment of the mitochondrial and lysosomal distribution. In addition, a decrease of mature neurons derived from differentiating NPCs is evident in ethanol pre-exposed compared to control NPCs. Moreover, a second insult of a pro-inflammatory factor in addition to ethanol preexposure enhances innate cellular inflammation in human iPS cells. CONCLUSIONS: This study provides strong evidence that neuronal inflammation contributes to the pathophysiology of AUDs through the activation of the inflammasome pathway in human cellular models.


Assuntos
Etanol/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Neurais/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peróxidos/farmacologia
6.
Nat Commun ; 7: 10862, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983594

RESUMO

Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.


Assuntos
Encéfalo/citologia , Reprogramação Celular , Imageamento Tridimensional , Neurônios/citologia , Neurônios/transplante , Alicerces Teciduais/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Polímeros/química , Fatores de Transcrição/metabolismo
7.
ACS Biomater Sci Eng ; 2(6): 1030-1038, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32582837

RESUMO

While cell transplantation presents a potential strategy to treat the functional deficits of neurodegenerative diseases or central nervous system injuries, the poor survival rate of grafted cells in vivo is a major barrier to effective therapeutic treatment. In this study, we investigated the role of a peptide-based nanofibrous scaffold composed of the self-assembling peptide RADA16-I to support the reprogramming and maturation of human neurons in vitro and to transplant these neurons in vivo. The induced human neurons were generated via the single transcriptional factor transduction of induced pluripotent stem cells (iPSCs), which are a promising cell source for regenerative therapies. These neurons encapsulated within RADA16-I scaffolds displayed robust neurite outgrowth and demonstrated high levels of functional activity in vitro compared to that of 2-D controls, as determined by live cell calcium imaging. When evaluated in vivo as a transplantation vehicle for adherent, functional networks of neurons, monodisperse RADA16-I microspheres significantly increased survival (over 100-fold greater) compared to the conventional transplantation of unsupported neurons in suspension. The scaffold-encapsulated neurons integrated well in vivo within the injection site, extending neurites several hundred microns long into the host brain tissue. Overall, these results suggest that this biomaterial platform can be used to successfully improve the outcome of cell transplantation and neuro-regenerative therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA