Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2797, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307876

RESUMO

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Camundongos , Perfilação da Expressão Gênica , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , RNA Interferente Pequeno
2.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768453

RESUMO

4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.


Assuntos
Himecromona , Transcriptoma , Camundongos , Animais , Himecromona/farmacologia , Fígado/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Metabolismo dos Lipídeos
3.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010574

RESUMO

Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.7 monocyte/macrophage cell line and mouse-bone-marrow-derived macrophages (BMDMs). The impact of IRF5 knockdown was most pronounced, curtailing the expression of other inflammatory mediators such as IL-6 and NOS2, especially in M1-polarized macrophages. Contrary to IRF5, EGR2 knockdown potentiated M1-associated markers while altogether abolishing M2 marker expression, which is indicative of the principal role of EGR2 in the maintenance of alternative phenotypes. IRF3 knockdown suppressed M1 polarization but upregulated Arg 1, a canonical marker of alternative polarization in M1 macrophages. As anticipated, the knockdown of TLR4 also attenuated the M1 phenotype but, akin to IRF3, significantly induced Arginase 1 in M0 and M1, driving the phenotype towards M2. This study validates RNAi as a viable option for the alteration and maintenance of macrophage phenotypes.


Assuntos
Ativação de Macrófagos , Receptor 4 Toll-Like , Animais , Biomarcadores/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA