Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(69): eabg5539, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245086

RESUMO

Type 1 conventional dendritic cells (cDC1s) are rare immune cells critical for the induction of antigen-specific cytotoxic CD8+ T cells, although the genetic program driving human cDC1 specification remains largely unexplored. We previously identified PU.1, IRF8, and BATF3 transcription factors as sufficient to induce cDC1 fate in mouse fibroblasts, but reprogramming of human somatic cells was limited by low efficiency. Here, we investigated single-cell transcriptional dynamics during human cDC1 reprogramming. Human induced cDC1s (hiDC1s) generated from embryonic fibroblasts gradually acquired a global cDC1 transcriptional profile and expressed antigen presentation signatures, whereas other DC subsets were not induced at the single-cell level during the reprogramming process. We extracted gene modules associated with successful reprogramming and identified inflammatory signaling and the cDC1-inducing transcription factor network as key drivers of the process. Combining IFN-γ, IFN-ß, and TNF-α with constitutive expression of cDC1-inducing transcription factors led to improvement of reprogramming efficiency by 190-fold. hiDC1s engulfed dead cells, secreted inflammatory cytokines, and performed antigen cross-presentation, key cDC1 functions. This approach allowed efficient hiDC1 generation from adult fibroblasts and mesenchymal stromal cells. Mechanistically, PU.1 showed dominant and independent chromatin targeting at early phases of reprogramming, recruiting IRF8 and BATF3 to shared binding sites. The cooperative binding at open enhancers and promoters led to silencing of fibroblast genes and activation of a cDC1 program. These findings provide mechanistic insights into human cDC1 specification and reprogramming and represent a platform for generating patient-tailored cDC1s, a long-sought DC subset for vaccination strategies in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Fatores Reguladores de Interferon , Animais , Apresentação Cruzada , Células Dendríticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Immunity ; 54(8): 1883-1900.e5, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331874

RESUMO

Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.


Assuntos
Células Dendríticas/imunologia , Expressão Gênica/imunologia , Monócitos/imunologia , Transcriptoma/genética , Macrófagos Associados a Tumor/imunologia , Artrite Reumatoide/imunologia , COVID-19/imunologia , Expressão Gênica/genética , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , L-Aminoácido Oxidase/metabolismo , Cirrose Hepática/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , RNA Citoplasmático Pequeno/genética , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Transcriptoma/imunologia
3.
Nat Aging ; 1(8): 666-676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-37117767

RESUMO

The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Transplante de Microbiota Fecal , Envelhecimento/genética , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA