Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38712195

RESUMO

Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic Inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing Inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.

2.
Curr Protoc ; 3(11): e929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37984376

RESUMO

Historically, the laboratory mouse has been the mammalian species of choice for studying gene function and for modeling diseases in humans. This was mainly due to their availability from mouse fanciers. In addition, their short generation time, small size, and minimal food consumption compared to that of larger mammals were definite advantages. This led to the establishment of large hubs for the development of genetically modified mouse models, such as the Jackson Laboratory. Initial research into inbred mouse strains in the early 1900s revolved around coat color genetics and cancer studies, but gene targeting in embryonic stem cells and the introduction of transgenes through pronuclear injection of a mouse zygote, along with current clustered regularly interspaced short palindromic repeat (CRISPR) RNA gene editing, have allowed easy manipulation of the mouse genome. Originally, to distribute a mouse model to other facilities, standard methods had to be developed to ensure that each modified mouse trait could be consistently identified no matter which laboratory requested it. The task of establishing uniform protocols became easier with the development of the polymerase chain reaction (PCR). This chapter will provide guidelines for identifying genetically modified mouse models, mainly using endpoint PCR. In addition, we will discuss strategies to identify genetically modified mouse models that have been established using newer gene-editing technology such as CRISPR. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Digestion with proteinase K followed by purification of genomic DNA using phenol/chloroform Alternate Protocol: Digestion with proteinase K followed by crude isopropanol extraction of genomic DNA for tail biopsy and ear punch samples Basic Protocol 2: Purification of genomic DNA using a semi-automated system Basic Protocol 3: Purification of genomic DNA from semen, blood, or buccal swabs Basic Protocol 4: Purification of genomic DNA from mouse blastocysts to assess CRISPR gene editing Basic Protocol 5: Routine endpoint-PCR-based genotyping using DNA polymerase and thermal cycler Basic Protocol 6: T7E1/Surveyor assays to detect insertion or deletions following CRISPR editing Basic Protocol 7: Detecting off-target mutations following CRISPR editing Basic Protocol 8: Detecting genomic sequence deletion after CRISPR editing using a pair of guide RNAs Basic Protocol 9: Detecting gene knock-in events following CRISPR editing Basic Protocol 10: Screening of conditional knockout floxed mice.


Assuntos
DNA , RNA Guia de Sistemas CRISPR-Cas , Humanos , Camundongos , Animais , Genótipo , Endopeptidase K/genética , Camundongos Knockout , DNA/genética , Modelos Animais de Doenças , Mamíferos/genética
3.
Mol Pain ; 19: 17448069231218353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37982142

RESUMO

Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.


Assuntos
Dor Crônica , Humanos , Potenciais de Ação , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Células Receptoras Sensoriais/metabolismo
4.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398398

RESUMO

Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological conditions. Tissue or nerve injuries induce comprehensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation-dependent manner under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons are not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential and reduced the rheobase currents as compared to the uninfected neurons. CDK5 activation evidently changed the shape of the action potential (AP) by increasing AP rise time, AP fall time, and AP half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in uninfected hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any further significant changes in addition to the aforementioned changes of the membrane properties and AP parameters in the p35-overexpressing group. We conclude that CDK5 activation through the overexpression of p35 in dissociated hDRG neurons broadens AP in hDRG neurons and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under pathological conditions, contributing to chronic pain.

5.
bioRxiv ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37502949

RESUMO

Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies. In particular, BRCA1 accumulation within neurofibrillary tangles and colocalization with tau aggregates in the cytoplasm of AD patients implicates the involvement of mutant forms of BRCA1/BARD1 proteins in disease pathogenesis. The purpose of this study is to show that the location of mutations in the translated BARD1, specifically within ankyrin repeats, has strong correlation with the Cdk5 motifs for phosphorylation. Mapping of the mutation sites on the protein's three-dimensional structure and estimation of the backbone dihedral angles show transitions between the canonical helical and extended conformations of the tetrapeptide sequence of ankyrin repeats. Clustering of mutations in BARD1 ankyrin repeats near the N-termini of the helices with T/SXXH motifs provides a basis for conformational transitions that might be necessary to ensure the compatibility of the substrate with active site geometry and accessibility of the substrate to the kinase. Ankyrin repeats are interaction sites for phosphorylation-dependent dynamic assembly of proteins including those involved in transcription regulation and signaling, and present potential targets for the design of new drugs.

6.
Sci Rep ; 12(1): 17012, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220867

RESUMO

Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain soma of sensory neurons and modulate sensory signal transduction into the central nervous system. In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho-proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and altered mRNA processing. These results reveal new insights into changes in the molecular profiles associated with DPN.


Assuntos
Dor Crônica , Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Humanos , Aminoácidos/metabolismo , Dor Crônica/metabolismo , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/complicações , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Fosfolipídeos/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo
7.
Mol Pain ; 18: 17448069221111473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726573

RESUMO

Cyclin dependent kinase 5 (Cdk5) is a key neuronal kinase whose activity can modulate thermo-, mechano-, and chemo-nociception. Cdk5 can modulate nociceptor firing by phosphorylating pain transducing ion channels like the transient receptor potential vanilloid 1 (TRPV1), a thermoreceptor that is activated by noxious heat, acidity, and capsaicin. TRPV1 is phosphorylated by Cdk5 at threonine-407 (T407), which then inhibits Ca2+ dependent desensitization. To explore the in vivo implications of Cdk5-mediated TRPV1 phosphorylation on pain perception, we engineered a phospho-null mouse where we replaced T407 with alanine (T407A). The T407A point mutation did not affect the expression of TRPV1 in nociceptors of the dorsal root ganglia and trigeminal ganglia (TG). However, behavioral tests showed that the TRPV1T407A knock-in mice have reduced aversion to oral capsaicin along with a trend towards decreased facial displays of pain after a subcutaneous injection of capsaicin into the vibrissal pad. In addition, the TRPV1T407A mice display basal thermal hypoalgesia with increased paw withdrawal latency while tested on a hot plate. These results indicate that phosphorylation of TRPV1 by Cdk5 can have important consequences on pain perception, as loss of the Cdk5 phosphorylation site reduced capsaicin- and heat-evoked pain behaviors in mice.


Assuntos
Capsaicina , Quinase 5 Dependente de Ciclina/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/farmacologia , Quinase 5 Dependente de Ciclina/genética , Gânglios Espinais/metabolismo , Camundongos , Nociceptividade , Dor/genética , Dor/metabolismo , Fosforilação , Treonina/metabolismo
8.
Sci Rep ; 12(1): 4729, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304484

RESUMO

Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Neuralgia , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Neuropatias Diabéticas/genética , Gânglios Espinais , Perfilação da Expressão Gênica , Inflamação/genética , Neuralgia/genética , Células Receptoras Sensoriais , Transcriptoma
9.
PLoS One ; 16(11): e0259966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780561

RESUMO

Amelogenins, major extra cellular matrix proteins of developing tooth enamel, are predominantly expressed by ameloblasts and play significant roles in the formation of enamel. Recently, amelogenin has been detected in various epithelial and mesenchymal tissues, implicating that it might have distinct functions in various tissues. We have previously reported that leucine rich amelogenin peptide (LRAP), one of the alternate splice forms of amelogenin, regulates receptor activator of NF-kappa B ligand (RANKL) expression in cementoblast/periodontal ligament cells, suggesting that the amelogenins, especially LRAP, might function as a signaling molecule in bone metabolism. The objective of this study was to identify and define LRAP functions in bone turnover. We engineered transgenic (TgLRAP) mice using a murine 2.3kb α1(I)-collagen promoter to drive expression of a transgene consisting of LRAP, an internal ribosome entry site (IRES) and enhanced green fluorescent protein (EGFP) to study functions of LRAP in bone formation and resorption. Calvarial cell cultures from the TgLRAP mice showed increased alkaline phosphatase (ALP) activity and increased formation of mineralized nodules compared to the cells derived from wild-type (WT) mice. The TgLRAP calvarial cells also showed an inhibitory effect on osteoclastogenesis in vitro. Gene expression comparison by quantitative polymerase chain reaction (Q-PCR) in calvarial cells indicated that bone formation makers such as Runx2, Alp, and osteocalcin were increased in TgLRAP compared to the WT cells. Meanwhile, Rankl expression was decreased in the TgLRAP cells in vitro. The ovariectomized (OVX) TgLRAP mice resisted bone loss induced by ovariectomy resulting in higher bone mineral density in comparison to OVX WT mice. The quantitative analysis of calcein intakes indicated that the ovariectomy resulted in increased bone formation in both WT and TgLRAP mice; OVX TgLRAP appeared to show the most remarkably increased bone formation. The parameters for bone resorption in tissue sections showed increased number of osteoclasts in OVX WT, but not in OVX TgLRAP over that of sham operated WT or TgLRAP mice, supporting the observed bone phenotypes in OVX mice. This is the first report identifying that LRAP, one of the amelogenin splice variants, affects bone turnover in vivo.


Assuntos
Reabsorção Óssea/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Proteínas do Esmalte Dentário/genética , Proteínas de Fluorescência Verde/genética , Ovariectomia/efeitos adversos , Animais , Densidade Óssea , Reabsorção Óssea/etiologia , Células Cultivadas , Feminino , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Sítios Internos de Entrada Ribossomal , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Regiões Promotoras Genéticas
10.
Curr Protoc ; 1(10): e276, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34679246

RESUMO

Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.


Assuntos
Quinase 5 Dependente de Ciclina , Neurônios , Animais , Orientação de Axônios , Quinase 5 Dependente de Ciclina/metabolismo , Camundongos , Neurogênese , Neurônios/metabolismo , Fosforilação , Transdução de Sinais
12.
Sci Rep ; 11(1): 13371, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183697

RESUMO

The severity of tissue injury in burn wounds from associated inflammatory and immune sequelae presents a significant clinical management challenge. Among various biophysical wound management approaches, low dose biophotonics treatments, termed Photobiomodulation (PBM) therapy, has gained recent attention. One of the PBM molecular mechanisms of PBM treatments involves photoactivation of latent TGF-ß1 that is capable of promoting tissue healing and regeneration. This work examined the efficacy of PBM treatments in a full-thickness burn wound healing in C57BL/6 mice. We first optimized the PBM protocol by monitoring tissue surface temperature and histology. We noted this dynamic irradiance surface temperature-monitored PBM protocol improved burn wound healing in mice with elevated TGF-ß signaling (phospho-Smad2) and reduced inflammation-associated gene expression. Next, we investigated the roles of individual cell types involved in burn wound healing following PBM treatments and noted discrete effects on epithelieum, fibroblasts, and macrophage functions. These responses appear to be mediated via both TGF-ß dependent and independent signaling pathways. Finally, to investigate specific contributions of TGF-ß1 signaling in these PBM-burn wound healing, we utilized a chimeric TGF-ß1/ß3 knock-in (TGF-ß1Lß3/Lß3) mice. PBM treatments failed to activate the chimeric TGF-ß1Lß3/Lß3 complex and failed to improve burn wound healing in these mice. These results suggest activation of endogenous latent TGF-ß1 following PBM treatments plays a key role in burn wound healing. These mechanistic insights can improve the safety and efficacy of clinical translation of PBM treatments for tissue healing and regeneration.


Assuntos
Queimaduras/metabolismo , Queimaduras/radioterapia , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização/efeitos da radiação , Animais , Linhagem Celular , Inflamação/metabolismo , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais/efeitos da radiação
13.
Curr Protoc Cell Biol ; 81(1): e57, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30178917

RESUMO

CRISPR/Cas9 technology has revolutionized genome editing in mice, allowing for simple and rapid development of knockouts and knockins. CRISPR relies on small guide RNAs that direct the RNA-guided nuclease Cas9 to a designated genomic site using ∼20 bp of corresponding sequence. Cas9 then creates a double-strand break in the targeted loci that is either patched in an error-prone fashion to produce a frame-shift mutation, a knockout, or is repaired by recombination with donor DNA containing homology arms, a knockin. This protocol covers the techniques needed to rapidly generate knockout and knockin mice with CRISPR via microinjection of Cas9, the guide RNA, and possible donor DNA into the mouse zygote. © 2018 by John Wiley & Sons, Inc.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais , Reparo do DNA por Junção de Extremidades/genética , Eletroporação , Embrião de Mamíferos/metabolismo , Engenharia Genética , Técnicas de Genotipagem , Mutação INDEL/genética , Camundongos , Camundongos Knockout , Microinjeções , Mutação Puntual/genética , RNA Guia de Cinetoplastídeos/metabolismo
14.
Sci Rep ; 8(1): 1177, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352128

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and this interaction was blocked by TFP5, an inhibitor that prevents activation of Cdk5. In vitro peptide-based kinase assay revealed that four of six TRPA1 Cdk5 consensus sites acted as substrates for Cdk5, and modeling of the ankyrin repeats disclosed that phosphorylation would occur at characteristic pockets within the (T/S)PLH motifs. Calcium imaging of trigeminal ganglion neurons from genetically engineered mice overexpressing or lacking the Cdk5 activator p35 displayed increased or decreased responsiveness, respectively, to stimulation with the TRPA1 agonist allylisothiocyanate (AITC). AITC-induced chemo-nociceptive behavior was also heightened in vivo in mice overexpressing p35 while being reduced in p35 knockout mice. Our findings demonstrate that TRPA1 is a substrate of Cdk5 and that Cdk5 activity is also able to modulate TRPA1 agonist-induced calcium influx and chemo-nociceptive behavioral responses.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Nociceptividade , Canal de Cátion TRPA1/metabolismo , Animais , Cálcio/metabolismo , Biologia Computacional/métodos , Quinase 5 Dependente de Ciclina/química , Quinase 5 Dependente de Ciclina/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Imagem Molecular , Neurônios/metabolismo , Fosforilação , Conformação Proteica , Especificidade por Substrato , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética , Gânglio Trigeminal/metabolismo
15.
Mol Pain ; 13: 1744806917737205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28969475

RESUMO

Abstract: Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5's other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto/deficiência , Dor Facial/metabolismo , Proteínas Ligadas a Lipídeos/deficiência , Proteínas do Tecido Nervoso/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Dor Facial/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Percepção da Dor/fisiologia , Fosfotransferases/metabolismo , Sensação/fisiologia , Transdução de Sinais/fisiologia
16.
Pain ; 158(11): 2155-2168, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28809765

RESUMO

The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2X2/metabolismo , Células Receptoras Sensoriais/fisiologia , Treonina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Camundongos , Mutação/genética , Oócitos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Ratos , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Roscovitina , Células Receptoras Sensoriais/efeitos dos fármacos , Treonina/genética , Xenopus
17.
Oncoimmunology ; 5(5): e1130206, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27467947

RESUMO

Cumulative evidence suggests that constitutively activated signal transducer and activator of transcription (STAT3) may contribute to sustaining immunosuppressive status, and that inhibiting STAT3 signaling represents a potential strategy to improve antitumor immunity. In the present study, we observed that high levels phosphorylated of STAT3 are significantly associated with the markers for both myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in human head and neck squamous cell carcinoma (HNSCC). Additionally, we showed that targeting STAT3 signaling with a tolerable selective inhibitor S3I-201 significantly decreased immature myeloid cells such as MDSCs, TAMs and iDCs in genetically defined mice HNSCC model. These findings highlight that targeting STAT3 signaling may be effective to enhance antitumor immunity via myeloid suppressor cells in HNSCC.

18.
J Innate Immun ; 8(4): 330-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26987072

RESUMO

(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.


Assuntos
Imunidade Adaptativa , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Imunidade Inata , Dor/tratamento farmacológico , Purinas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Fibrose Cística/imunologia , Humanos , Imunomodulação , Neoplasias/tratamento farmacológico , Roscovitina
19.
Sci Rep ; 6: 22007, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902776

RESUMO

TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.


Assuntos
Condicionamento Operante/fisiologia , Quinase 5 Dependente de Ciclina/genética , Hiperalgesia/metabolismo , Nociceptividade/fisiologia , Limiar da Dor/fisiologia , Canais de Cátion TRPV/genética , Animais , Células CHO , Cálcio/metabolismo , Capsaicina/farmacologia , Cricetulus , Quinase 5 Dependente de Ciclina/metabolismo , Ingestão de Líquidos , Expressão Gênica , Células HEK293 , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Fosforilação , Ratos , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
20.
Mol Pain ; 9: 66, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359609

RESUMO

BACKGROUND: Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. RESULTS: Mice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia. CONCLUSIONS: Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/enzimologia , Animais , Quinase 5 Dependente de Ciclina/genética , Dor Facial/enzimologia , Dor Facial/metabolismo , Hiperalgesia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Gânglio Trigeminal/enzimologia , Gânglio Trigeminal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA