Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gan To Kagaku Ryoho ; 50(12): 1307-1310, 2023 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-38247069

RESUMO

Necitumumab enhances antitumor immunity by decreasing the PD-L1 expression; it is expected to improve the prognosis of patients treated with an immune checkpoint inhibitor(ICI)by inhibiting the IL-8 expression. Since the combined effect of necitumumab and PD-L1 inhibitor was confirmed in an in vivo study conducted in transgenic mice, further antitumor effects can be expected by the combined use of necitumumab and ICI.


Assuntos
Anticorpos Monoclonais Humanizados , Inibidores de Checkpoint Imunológico , Animais , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Projetos de Pesquisa , Receptores ErbB/imunologia
2.
PLoS One ; 17(7): e0268244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35849586

RESUMO

Prolonged activation of vascular endothelial growth factor receptor-2 (VEGFR-2) due to mis-regulation of the VEGF pathway induces aberrant blood vessel expansion, which supports growth and survival of solid tumors. Therapeutic interventions that inhibit the VEGFR-2 pathway have therefore become a mainstay of cancer treatment. Non-clinical studies have recently revealed that blockade of angiogenesis can modulate the tumor microenvironment and enhance the efficacy of concurrent immune therapies. Ramucirumab is an FDA-approved anti-angiogenic antibody that inhibits VEGFR-2 and is currently being evaluated in clinical studies in combination with anti-programmed cell death (PD-1) axis checkpoint inhibitors (pembrolizumab, durvalumab, or sintilimab) across several cancer types. The purpose of this study is to establish a mechanistic basis for the enhanced activity observed in the combined blockade of VEGFR-2 and PD-1-axis pathways. Pre-clinical studies were conducted in murine tumor models known to be responsive to anti-PD-1 axis therapy, using monoclonal antibodies that block mouse VEGFR-2 and programmed death-ligand 1 (PD-L1). Combination therapy resulted in enhanced anti-tumor activity compared to anti-PD-L1 monotherapy. VEGFR-2 blockade at early timepoints post-anti-PD-L1 therapy resulted in a dose-dependent and transient enhanced infiltration of T cells, and establishment of immunological memory. VEGFR-2 blockade at later timepoints resulted in enhancement of anti-PD-L1-driven immune cell infiltration. VEGFR-2 and PD-L1 monotherapies induced both unique and overlapping patterns of immune gene expression, and combination therapy resulted in an enhanced immune activation signature. Collectively, these results provide new and actionable insights into the mechanisms by which concurrent VEGFR-2 and PD-L1 antibody therapy leads to enhanced anti-tumor efficacy.


Assuntos
Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Camundongos , Neoplasias/terapia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
3.
Mol Carcinog ; 60(2): 138-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33378592

RESUMO

Prognosis for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) remains poor. Development of more effective and less toxic targeted therapies is necessary for HNSCC patients. Checkpoint kinase 1 (CHK1) plays a vital role in cell cycle regulation and is a promising therapeutic target in HNSCC. Prexasertib, a CHK1 inhibitor, induces DNA damage and cell death, however, its effect on the tumor immune microenvironment (TIME) is largely unknown. Therefore, we evaluated a short-term and long-term effects of prexasertib in HNSCC and its TIME. Prexasertib caused increased DNA damage and cell death in vitro and significant tumor regression and improved survival in vivo. The gene expression and multiplex immunohistochemistry (mIHC) analyses of the in vivo tumors demonstrated increased expression of genes that are related to T-cell activation and increased immune cell trafficking, and decreased expression of genes that related to immunosuppression. However, increased expression of genes related to immunosuppression emerged over time suggesting evasion of immune surveillances. These findings in gene expression analyses were confirmed using mIHC which showed differential modulation of TIME in the tumor margins and as well as cores over time. These results suggest that evasion of immune surveillance, at least in part, may contribute to the acquired resistance to prexasertib in HNSCC.


Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/prevenção & controle , Pirazinas/farmacologia , Pirazóis/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Clin Cancer Res ; 25(23): 7175-7188, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409612

RESUMO

PURPOSE: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination. Although the clinical data suggest a positive interaction between pemetrexed-based chemotherapy and immunotherapy, the underlying mechanism remains unknown. EXPERIMENTAL DESIGN: Mouse tumor models (MC38, Colon26) and high-content biomarker studies (flow cytometry, Quantigene Plex, and nCounter gene expression analysis) were deployed to obtain insights into the mechanistic rationale behind the efficacy observed with pemetrexed/anti-PD-L1 combination. ICD in tumor cell lines was assessed by calreticulin and HMGB-1 immunoassays, and metabolic function of primary T cells was evaluated by Seahorse analysis. RESULTS: Pemetrexed treatment alone increased T-cell activation in mouse tumors in vivo, robustly induced ICD in mouse tumor cells and exerted T-cell-intrinsic effects exemplified by augmented mitochondrial function and enhanced T-cell activation in vitro. Increased antitumor efficacy and pronounced inflamed/immune activation were observed when pemetrexed was combined with anti-PD-L1. CONCLUSIONS: Pemetrexed augments systemic intratumor immune responses through tumor intrinsic mechanisms including immunogenic cell death, T-cell-intrinsic mechanisms enhancing mitochondrial biogenesis leading to increased T-cell infiltration/activation along with modulation of innate immune pathways, which are significantly enhanced in combination with PD-1 pathway blockade.See related commentary by Buque et al., p. 6890.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Ácido Fólico/metabolismo , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Mitocôndrias/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Antígeno B7-H1/imunologia , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Consumo de Oxigênio , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Immunother Cancer ; 6(1): 47, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866156

RESUMO

BACKGROUND: TGFß signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFß's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFß pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses. RESULTS: In vitro treatment with galunisertib reversed TGFß and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFß and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy. CONCLUSIONS: Together these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.


Assuntos
Terapia Combinada/métodos , Imunoterapia/métodos , Pirazóis/uso terapêutico , Quinolinas/uso terapêutico , Fator de Crescimento Transformador beta/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pirazóis/farmacologia , Quinolinas/farmacologia
6.
J Immunother Cancer ; 6(1): 45, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866166

RESUMO

Unfortunately, after publication of this article [1], it was noticed that corrections to the legends of Figs. 1 and 2 were not correctly incorporated. The correct legends can be seen below.

7.
J Immunother Cancer ; 6(1): 31, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712568

RESUMO

BACKGROUND: Modulation of the PD-1/PD-L1 axis through antagonist antibodies that block either receptor or ligand has been shown to reinvigorate the function of tumor-specific T cells and unleash potent anti-tumor immunity, leading to durable objective responses in a subset of patients across multiple tumor types. RESULTS: Here we describe the discovery and preclinical characterization of LY3300054, a fully human IgG1λ monoclonal antibody that binds to human PD-L1 with high affinity and inhibits interactions of PD-L1 with its two cognate receptors PD-1 and CD80. The functional activity of LY3300054 on primary human T cells is evaluated using a series of in vitro T cell functional assays and in vivo models using human-immune reconstituted mice. LY3300054 is shown to induce primary T cell activation in vitro, increase T cell activation in combination with anti-CTLA4 antibody, and to potently enhance anti-tumor alloreactivity in several xenograft mouse tumor models with reconstituted human immune cells. High-content molecular analysis of tumor and peripheral tissues from animals treated with LY3300054 reveals distinct adaptive immune activation signatures, and also previously not described modulation of innate immune pathways. CONCLUSIONS: LY3300054 is currently being evaluated in phase I clinical trials for oncology indications.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Imunoglobulina G/imunologia , Neoplasias/imunologia , Animais , Linhagem Celular , Cricetulus , Feminino , Humanos , Macaca fascicularis , Camundongos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA