Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(7): e10346, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484934

RESUMO

Life history traits and environmental conditions influence reproductive success in animals, and consequences of these can influence subsequent survival and recruitment into breeding populations. Understanding influences on demographic rates is required to determine the causes of decline. Migratory species experience spatially and temporally variable conditions across their annual cycle, making identifying where the factors influencing demographic rates operate challenging. Here, we use the Whinchat Saxicola rubetra as a model declining long-distance migrant bird. We analyse 10 years of data from 247 nesting attempts and 2519 post-fledging observations of 1193 uniquely marked nestlings to examine the influence of life history traits, habitat characteristics and weather on survival of young from the nestling stage to local recruitment into the natal population. We detected potential silver spoon effects where conditions during the breeding stage influence subsequent apparent local recruitment rates, with higher recruitment for fledglings from larger broods, and recruitment rate negatively related to rainfall that chicks experienced in-nest. Additionally, extreme temperatures experienced pre- and post-fledging increased fledging success and recruitment rate. However, we could not determine whether this was driven by temperature influencing mortality during the post-fledging period or later in the annual cycle. Brood size declined with hatching date. In-nest survival increased with brood size and was highest at local temperature extremes. Furthermore, nest survival was highest at nests surrounded with 40%-60% vegetation cover of Bracken Pteridium aquilinum within 50 m of the nest. Our results show that breeding phenology and environmental factors may influence fledging success and recruitment in songbird populations, with conditions experienced during the nestling stage influencing local recruitment rates in Whinchats (i.e. silver spoon effect). Recruitment rates are key drivers of songbird population dynamics. Our results help identify some of the likely breeding season mechanisms that could be important population drivers.

2.
iScience ; 26(3): 106116, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36994192

RESUMO

We used a green fluorescent protein marker gene for paternity analysis to determine if virus infection affected male reproductive success of tomato in bumblebee-mediated cross-pollination under glasshouse conditions. We found that bumblebees that visited flowers of infected plants showed a strong preference to subsequently visit flowers of non-infected plants. The behavior of the bumblebees to move toward non-infected plants after pollinating virus-infected plants appears to explain the paternity data, which demonstrate a statistically significant ∼10-fold bias for fertilization of non-infected plants with pollen from infected parents. Thus, in the presence of bumblebee pollinators, CMV-infected plants exhibit enhanced male reproductive success.

3.
Ecol Evol ; 12(4): e8829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35441005

RESUMO

The overproduction of offspring is commonly associated with high hatching failure and a mechanism for dispensing with surplus young. We used experimental evolution of burying beetle populations Nicrophorus vespilloides to determine causality in these correlations. We asked does eliminating the mechanism for killing "spare" offspring cause the evolution of a more restrained clutch size and consequently select for reduced hatching failure? N. vespilloides typically overproduces eggs but kills 1st instar larvae through partial filial cannibalism during brood care. We established replicate evolving populations that either could practice filial cannibalism (Full Care) or could not, by removing parents before their young hatched (No Care). After 20+ generations of experimental evolution, we measured clutch size and hatching success. We found that No Care females produced fewer eggs than Full Care females when allowed to breed on a small corpse, a finding not explained by differences in female quality. On larger corpses, females from both populations laid similar numbers of eggs. Furthermore, hatching success was greater in the No Care populations on small corpses. Our results suggest that the adaptive overproduction of offspring depends on a mechanism for eliminating surplus young and that killing offspring, in turn, relaxes selection against hatching failure.

4.
Proc Biol Sci ; 285(1885)2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158310

RESUMO

Interactions among siblings are finely balanced between rivalry and cooperation, but the factors that tip the balance towards cooperation are incompletely understood. Previous observations of insect species suggest that (i) sibling cooperation is more likely when siblings hatch at the same time, and (ii) this is more common when parents provide little to no care. In this paper, we tested these ideas experimentally with the burying beetle, Nicrophorus vespilloides Burying beetles convert the body of a small dead vertebrate into an edible nest for their larvae, and provision and guard their young after hatching. In our first experiment, we simulated synchronous or asynchronous hatching by adding larvae at different intervals to the carrion-breeding resource. We found that 'synchronously' hatched broods survived better than 'asynchronously' hatched broods, probably because 'synchronous hatching' generated larger teams of larvae, that together worked more effectively to penetrate the carrion nest and feed upon it. In our second experiment, we measured the synchronicity of hatching in experimental populations that had evolved for 22 generations without any post-hatching care, and control populations that had evolved in parallel with post-hatching care. We found that larvae were more likely to hatch earlier, and at the same time as their broodmates, in the experimental populations that evolved without post-hatching care. We suggest that synchronous hatching enables offspring to help each other when parents are not present to provide care. However, we also suggest that greater levels of cooperation among siblings cannot compensate fully for the loss of parental care.


Assuntos
Adaptação Biológica , Comportamento Animal , Evolução Biológica , Besouros/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Comportamento Materno , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA