Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37786677

RESUMO

MITF, a basic-Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. To explore MITF regulation and its role in melanoma, we conducted a genetic screen for suppressors of the Mitf-associated pigmentation phenotype. An intragenic Mitf mutation was identified, leading to termination of MITF at the K316 SUMOylation site and loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability. Interestingly, as a dimer, it can translocate wild-type and mutant MITF partners into the nucleus, improving its own stability and ensuring an active nuclear MITF supply. Interactions between K316 SUMOylation and S409 phosphorylation sites across monomers largely explain the observed effects. Notably, the recurrent melanoma-associated E318K mutation in MITF, which affects K316 SUMOylation, also alters protein regulation in concert with S409, unraveling a novel regulatory mechanism with unexpected disease insights.

2.
Mol Ecol ; 31(16): 4364-4380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751552

RESUMO

By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with a marked geographical partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and seven wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during migrations into northern Europe, eastern and southern Asia, and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographical range.


Assuntos
DNA Mitocondrial , Variação Genética , Animais , DNA Mitocondrial/genética , Cabras/genética , Haplótipos/genética , Filogenia , Cromossomo Y/genética
3.
Anim Genet ; 53(2): 220-223, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34967038

RESUMO

Several genetic variants have been shown to affect the mean number of offspring in different sheep breeds. Here, we analyzed samples from Icelandic sheep with the aim of identifying the genetic cause of the Icelandic Loa phenotype using three previously identified prolificacy genes as candidates. We demonstrate that a 4-bp frameshift deletion positioned in the mature region of the GDF9 protein in the Loa animals is a likely causal mutation for the observed increase in prolificacy; however, sequencing showed that not all ewes with a high number of offspring carried the deletion, suggesting the presence of a second mutation segregating within this group of animals.


Assuntos
Mutação da Fase de Leitura , Fator 9 de Diferenciação de Crescimento , Animais , Feminino , Fator 9 de Diferenciação de Crescimento/genética , Islândia , Tamanho da Ninhada de Vivíparos/genética , Mutação , Fenótipo , Gravidez , Ovinos/genética
4.
Front Plant Sci ; 12: 720238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630467

RESUMO

Icelandic barley genotypes have shown extreme earliness both in flowering and maturity compared to other north European genotypes, whereas earliness is a key trait in adapting barley to northern latitudes. Four genes were partially re-sequenced, which are Ppd-H1, HvCEN, HvELF3, and HvFT1, to better understand the mechanisms underlying this observed earliness. These genes are all known to play a part in the photoperiod response. The objective of this study is to correlate allelic diversity with flowering time and yield data from Icelandic field trials. The resequencing identified two to three alleles at each locus which resulted in 12 haplotype combinations. One haplotype combination containing the winter-type allele of Ppd-H1 correlated with extreme earliness, however, with a severe yield penalty. A winter-type allele in HvCEN in four genotypes correlated with earliness combined with high yield. Our results open the possibility of marker-assisted pyramiding as a rapid way to develop varieties with a shortened time from sowing to flowering under the extreme Icelandic growing conditions and possibly in other arctic or sub-arctic regions.

6.
R Soc Open Sci ; 6(10): 191059, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31824712

RESUMO

With the advent of ancient DNA, as well as other methods such as isotope analysis, destructive sampling of archaeofaunal remains has increased much faster than the effort to collect and curate them. While there has been considerable discussion regarding the ethics of destructive sampling and analysis of human remains, this dialogue has not extended to archaeofaunal material. Here we address this gap and discuss the ethical challenges surrounding destructive sampling of materials from archaeofaunal collections. We suggest ways of mitigating the negative aspects of destructive sampling and present step-by-step guidelines aimed at relevant stakeholders, including scientists, holding institutions and scientific journals. Our suggestions are in most cases easily implemented without significant increases in project costs, but with clear long-term benefits in the preservation and use of zooarchaeological material.

7.
Proc Biol Sci ; 286(1916): 20191929, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31771471

RESUMO

Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.


Assuntos
Distribuição Animal , Cães/anatomia & histologia , Cães/genética , Genoma Mitocondrial , Fenótipo , Alaska , Animais , Arqueologia , Regiões Árticas , Canadá , DNA Antigo/análise , DNA Mitocondrial/análise , Groenlândia , Migração Humana
8.
Front Plant Sci ; 10: 542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130971

RESUMO

The northwards expansion of barley production requires adaptation to longer days, lower temperatures and stronger winds during the growing season. We have screened 169 lines of the current barley breeding gene pool in the Nordic region with regards to heading, maturity, height, and lodging under different environmental conditions in nineteen field trials over 3 years at eight locations in northern and central Europe. Through a genome-wide association scan we have linked phenotypic differences observed in multi-environment field trials (MET) to single nucleotide polymorphisms (SNP). We have identified an allele combination, only occurring among a few Icelandic lines, that affects heat sum to maturity and requires 214 growing degree days (GDD) less heat sum to maturity than the most common allele combination in the Nordic spring barley gene pool. This allele combination is beneficial in a cold environment, where autumn frost can destroy a late maturing harvest. Despite decades of intense breeding efforts relying heavily on the same germplasm, our results show that there still exists considerable variation within the current breeding gene pool and we identify ideal allele combinations for regional adaptation, which can facilitate the expansion of cereal cultivation even further northwards.

9.
Cell ; 177(6): 1419-1435.e31, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056281

RESUMO

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.


Assuntos
Cavalos/genética , Animais , Ásia , Evolução Biológica , Cruzamento/história , DNA Antigo/análise , Domesticação , Equidae/genética , Europa (Continente) , Feminino , Variação Genética/genética , Genoma/genética , História Antiga , Masculino , Filogenia
10.
Genet Sel Evol ; 50(1): 56, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449277

RESUMO

BACKGROUND: Genetic isolation of breeds may result in a significant loss of diversity and have consequences on health and performance. In this study, we examined the effect of geographic isolation on caprine genetic diversity patterns by genotyping 480 individuals from 25 European and African breeds with the Goat SNP50 BeadChip and comparing patterns of homozygosity of insular and nearby continental breeds. RESULTS: Among the breeds analysed, number and total length of ROH varied considerably and depending on breeds, ROH could cover a substantial fraction of the genome (up to 1.6 Gb in Icelandic goats). When compared with their continental counterparts, goats from Iceland, Madagascar, La Palma and Ireland (Bilberry and Arran) displayed a significant increase in ROH coverage, ROH number and FROH values (P value < 0.05). Goats from Mediterranean islands represent a more complex case because certain populations displayed a significantly increased level of homozygosity (e.g. Girgentana) and others did not (e.g. Corse and Sarda). Correlations of number and total length of ROH for insular goat populations with the distance between islands and the nearest continental locations revealed an effect of extremely long distances on the patterns of homozygosity. CONCLUSIONS: These results indicate that the effects of insularization on the patterns of homozygosity are variable. Goats raised in Madagascar, Iceland, Ireland (Bilberry and Arran) and La Palma, show high levels of homozygosity, whereas those bred in Mediterranean islands display patterns of homozygosity that are similar to those found in continental populations. These results indicate that the diversity of insular goat populations is modulated by multiple factors such as geographic distribution, population size, demographic history, trading and breed management.


Assuntos
Cruzamento , Cabras/genética , Homozigoto , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento/métodos , Europa (Continente) , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Islândia , Irlanda , Madagáscar , Ilhas do Mediterrâneo , Marrocos , Densidade Demográfica , Zimbábue
11.
Front Genet ; 9: 118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692799

RESUMO

Reproduction is an important trait in sheep breeding as well as in other livestock. However, despite its importance the genetic mechanisms of litter size in domestic sheep (Ovis aries) are still poorly understood. To explore genetic mechanisms underlying the variation in litter size, we conducted multiple independent genome-wide association studies in five sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep, and Romanov) and one low prolificacy (Texel) using the Ovine Infinium HD BeadChip, respectively. We identified different sets of candidate genes associated with litter size in different breeds: BMPR1B, FBN1, and MMP2 in Wadi; GRIA2, SMAD1, and CTNNB1 in Hu; NCOA1 in Icelandic; INHBB, NF1, FLT1, PTGS2, and PLCB3 in Finnsheep; ESR2 in Romanov and ESR1, GHR, ETS1, MMP15, FLI1, and SPP1 in Texel. Further annotation of genes and bioinformatics analyses revealed that different biological pathways could be involved in the variation in litter size of females: hormone secretion (FSH and LH) in Wadi and Hu, placenta and embryonic lethality in Icelandic, folliculogenesis and LH signaling in Finnsheep, ovulation and preovulatory follicle maturation in Romanov, and estrogen and follicular growth in Texel. Taken together, our results provide new insights into the genetic mechanisms underlying the prolificacy trait in sheep and other mammals, suggesting targets for selection where the aim is to increase prolificacy in breeding projects.

12.
PLoS One ; 12(8): e0183384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854285

RESUMO

The woodland strawberry, Fragaria vesca, holds great promise as a model organism. It not only represents the important Rosaceae family that includes economically important species such as apples, pears, peaches and roses, but it also complements the well-known model organism Arabidopsis thaliana in key areas such as perennial life cycle and the development of fleshy fruit. Analysis of wild populations of A. thaliana has shed light on several important developmental pathways controlling, for example, flowering time and plant growth, suggesting that a similar approach using F. vesca might add to our understanding on the development of rosaceous species and perennials in general. As a first step, 298 F. vesca plants were analyzed using microsatellite markers with the primary aim of analyzing population structure and distribution of genetic diversity. Of the 68 markers tested, 56 were polymorphic, with an average of 4.46 alleles per locus. Our analysis partly confirms previous classification of F. vesca subspecies in North America and suggests two groups within the subsp. bracteata. In addition, F. vesca subsp. vesca forms a single global population with evidence that the Icelandic group is a separate cluster from the main Eurasian population.


Assuntos
Fragaria/genética , Variação Genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fragaria/classificação , Frutas/genética , Genética Populacional/métodos , Filogenia , Rosaceae/classificação , Rosaceae/genética , Especificidade da Espécie
13.
Sci Rep ; 6: 38548, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924839

RESUMO

Horses have been valued for their diversity of coat colour since prehistoric times; this is especially the case since their domestication in the Caspian steppe in ~3,500 BC. Although we can assume that human preferences were not constant, we have only anecdotal information about how domestic horses were influenced by humans. Our results from genotype analyses show a significant increase in spotted coats in early domestic horses (Copper Age to Iron Age). In contrast, medieval horses carried significantly fewer alleles for these phenotypes, whereas solid phenotypes (i.e., chestnut) became dominant. This shift may have been supported because of (i) pleiotropic disadvantages, (ii) a reduced need to separate domestic horses from their wild counterparts, (iii) a lower religious prestige, or (iv) novel developments in weaponry. These scenarios may have acted alone or in combination. However, the dominance of chestnut is a remarkable feature of the medieval horse population.


Assuntos
Cavalos/fisiologia , Pigmentação , Animais , Simulação por Computador , DNA Antigo/análise , Método de Monte Carlo , Fenótipo , Fatores de Tempo
14.
Curr Biol ; 26(15): R697-R699, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505236

RESUMO

Horseback riding is the most fundamental use of domestic horses and has had a huge influence on the development of human societies for millennia. Over time, riding techniques and the style of riding improved. Therefore, horses with the ability to perform comfortable gaits (e.g. ambling or pacing), so-called 'gaited' horses, have been highly valued by humans, especially for long distance travel. Recently, the causative mutation for gaitedness in horses has been linked to a substitution causing a premature stop codon in the DMRT3 gene (DMRT3_Ser301STOP) [1]. In mice, Dmrt3 is expressed in spinal cord interneurons and plays an important role in the development of limb movement coordination [1]. Genotyping the position in 4396 modern horses from 141 breeds revealed that nowadays the mutated allele is distributed worldwide with an especially high frequency in gaited horses and breeds used for harness racing [2]. Here, we examine historic horse remains for the DMRT3 SNP, tracking the origin of gaitedness to Medieval England between 850 and 900 AD. The presence of the corresponding allele in Icelandic horses (9(th)-11(th) century) strongly suggests that ambling horses were brought from the British Isles to Iceland by Norse people. Considering the high frequency of the ambling allele in early Icelandic horses, we believe that Norse settlers selected for this comfortable mode of horse riding soon after arrival. The absence of the allele in samples from continental Europe (including Scandinavia) at this time implies that ambling horses may have spread from Iceland and maybe also the British Isles across the continent at a later date.


Assuntos
Marcha/genética , Cavalos/fisiologia , Fatores de Transcrição/história , Animais , Análise Mutacional de DNA , DNA Antigo/análise , Inglaterra , Frequência do Gene , Genótipo , História Medieval , Cavalos/genética , Islândia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Genetics ; 183(2): 581-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19635938

RESUMO

The microphthalmia-associated transcription factor (Mitf) has emerged as an important model for gene regulation in eukaryotic organisms. In vertebrates, it regulates the development of several cell types including melanocytes and has also been shown to play an important role in melanoma. In vitro, the activity of MITF is regulated by multiple signaling pathways, including the KITL/KIT/B-Raf pathway, which results in phosphorylation of MITF on serine residues 73 and 409. However, the precise role of signaling to MITF in vivo remains largely unknown. Here, we use a BAC transgene rescue approach to introduce specific mutations in MITF to study the importance of specific phospho-acceptor sites and protein domains. We show that mice that carry a BAC transgene where single-amino-acid substitutions have been made in the Mitf gene rescue the phenotype of the loss-of-function mutations in Mitf. This may indicate that signaling from KIT to MITF affects other phospho-acceptor sites in MITF or that alternative sites can be phosphorylated when Ser73 and Ser409 have been mutated. Our results have implications for understanding signaling to transcription factors. Furthermore, as MITF and signaling mechanisms have been shown to play an important role in melanomas, our findings may lead to novel insights into this resilient disease.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Olho/metabolismo , Cor de Cabelo/genética , Fator de Transcrição Associado à Microftalmia/genética , Transgenes/genética , Processamento Alternativo , Animais , Sítios de Ligação/genética , Éxons/genética , Olho/crescimento & desenvolvimento , Feminino , Deleção de Genes , Masculino , Melanócitos/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Miocárdio/metabolismo , Fenótipo , Fosforilação , Serina/genética , Serina/metabolismo , Pele/crescimento & desenvolvimento , Pele/metabolismo
16.
Genetics ; 178(1): 259-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202372

RESUMO

The mouse Mitf gene encodes a transcription factor that is regulated by serine phosphorylation and is critical for the development of melanin-containing pigment cells. To test the role of phosphorylation at a particular serine, S73 in exon 2 of Mitf, we used a standard targeting strategy in mouse embryonic stem cells to change the corresponding codon into one encoding an alanine. By chance, we generated an allele in which 85,222 bp of wild-type Mitf sequence are duplicated and inserted into an otherwise correctly targeted Mitf gene. Depending on the presence or absence of a neomycin resistance cassette, this genomic rearrangement leads to animals with a white coat with or without pigmented spots or a gray coat with obligatory white and black spots. Several independent, genetically stable germline revertants that lacked the duplicated wild-type sequence but retained the targeted codon were then derived. These animals were normally pigmented, indicating that the serine-to-alanine mutation is not deleterious to melanocyte development. The fact that mosaic coat reversions occur in all mice lacking the neo-cassette and that approximately 1% of these transmit a reverted allele to their offspring places this mutation among those with the highest spontaneous reversion rates in mammals.


Assuntos
Alelos , Mutação em Linhagem Germinativa/genética , Fator de Transcrição Associado à Microftalmia/genética , Alanina/genética , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Homozigoto , Hibridização in Situ Fluorescente , Íntrons/genética , Masculino , Camundongos , Mutagênese Insercional/efeitos dos fármacos , Neomicina/farmacologia , Fenótipo , Pigmentação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Serina/genética
17.
Pigment Cell Res ; 20(3): 185-200, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516926

RESUMO

The microphthalmia-associated transcription factor (MITF) is a member of the MYC family of basic helix-loop-helix leucine zipper transcription factors. The corresponding gene was initially discovered in the mouse based on mutations which affect the development of several different cell types, including melanocytes and retinal pigment epithelium cells. Subsequently, it was shown to be associated with deafness and hypo-pigmentation disorders in humans. More recently, the gene has been shown to be critical in melanoma formation and to play a role in melanocyte stem cell maintenance. Thus, the mouse Mitf gene represents an important model system for the study of human disease as well as an interesting model for the study of transcription factor function in the organism. Here we use the evolutionary relationship of Mitf genes from numerous distantly related species, including vertebrates and invertebrates, to identify novel conserved domains in the Mitf protein and regions of possible functional importance in the 3' untranslated region. We also characterize the nine different 5' exons of the Mitf gene and identify a new 5' exon in the Drosophila Mitf gene. Our analysis sheds new light on the conservation of the Mitf gene and protein and opens the door for further functional analysis.


Assuntos
Modelos Animais de Doenças , Evolução Molecular , Fator de Transcrição Associado à Microftalmia/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Drosophila melanogaster , Humanos , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
18.
Mol Cell Biol ; 26(23): 8914-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17000761

RESUMO

Commitment to the melanocyte lineage is characterized by the onset of expression of the microphthalmia-associated transcription factor (Mitf). This transcription factor plays a fundamental role in melanocyte development and maintenance and seems to be crucial for the survival of malignant melanocytes. Furthermore, Mitf has been shown to be involved in cell cycle regulation and to play important functions in self-renewal and maintenance of melanocyte stem cells. Although little is known about how Mitf regulates these various processes, one possibility is that Mitf interacts with other regulators. Here we show that Mitf can interact directly with beta-catenin, the key mediator of the canonical Wnt signaling pathway. The Wnt signaling pathway plays a critical role in melanocyte development and is intimately involved in triggering melanocyte stem cell proliferation. Significantly, constitutive activation of this pathway is a feature of a number of cancers including malignant melanoma. Here we show that Mitf can redirect beta-catenin transcriptional activity away from canonical Wnt signaling-regulated genes toward Mitf-specific target promoters to activate transcription. Thus, by a feedback mechanism, Mitf can diversify the output of canonical Wnt signaling to enhance the repertoire of genes regulated by beta-catenin. Our results reveal a novel mechanism by which Wnt signaling and beta-catenin activate gene expression, with significant implications for our understanding of both melanocyte development and melanoma.


Assuntos
Expressão Gênica , Fator de Transcrição Associado à Microftalmia/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Chlorocebus aethiops , Genes Reporter , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases/análise , Luciferases/metabolismo , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/genética , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transcrição Gênica , Transfecção , Proteínas Wnt/metabolismo , beta Catenina/química
19.
Genetics ; 167(1): 233-41, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15166150

RESUMO

The MITF protein is a member of the MYC family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors and is most closely related to the TFE3, TFEC, and TFEB proteins. In the mouse, MITF is required for the development of several different cell types, including the retinal pigment epithelial (RPE) cells of the eye. In Mitf mutant mice, the presumptive RPE cells hyperproliferate, abnormally express the retinal transcriptional regulator Pax6, and form an ectopic neural retina. Here we report the structure of the Mitf gene in Drosophila and demonstrate expression during embryonic development and in the eye-antennal imaginal disc. In vitro, transcriptional regulation by Drosophila Mitf, like its mouse counterpart, is modified by the Eyeless (Drosophila Pax6) transcription factor. In vivo, targeted expression of wild-type or dominant-negative Drosophila Mitf results in developmental abnormalities reminiscent of Mitf function in mouse eye development. Our results suggest that the Mitf gene is the original member of the Mitf-Tfe subfamily of bHLH-Zip proteins and that its developmental function is at least partially conserved between vertebrates and invertebrates. These findings further support the common origin of the vertebrate and invertebrate eyes.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Drosophila melanogaster/genética , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Complementar/metabolismo , Evolução Molecular , Genes Dominantes , Genoma , Camundongos , Fator de Transcrição Associado à Microftalmia , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Epitélio Pigmentado Ocular/embriologia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Ativação Transcricional , Transfecção
20.
Genetics ; 163(1): 267-76, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12586714

RESUMO

Mutations at the mouse microphthalmia locus (Mitf) affect the development of different cell types, including melanocytes, retinal pigment epithelial cells of the eye, and osteoclasts. The MITF protein is a member of the MYC supergene family of basic-helix-loop-helix-leucine-zipper (bHLHZip) transcription factors and is known to regulate the expression of cell-specific target genes by binding DNA as homodimer or as heterodimer with related proteins. The many mutations isolated at the locus have different effects on the phenotype and can be arranged in an allelic series in which the phenotypes range from near normal to white microphthalmic animals with osteopetrosis. Previous investigations have shown that certain combinations of Mitf alleles complement each other, resulting in a phenotype more normal than that of each homozygote alone. Here we analyze this interallelic complementation in detail and show that it is limited to one particular allele, Mitf(Mi-white) (Mitf(Mi-wh)), a mutation affecting the DNA-binding domain. Both loss- and gain-of-function mutations are complemented, as are other Mitf mutations affecting the DNA-binding domain. Furthermore, this behavior is not restricted to particular cell types: Both eye development and coat color phenotypes are complemented. Our analysis suggests that Mitf(Mi-wh)-associated interallelic complementation is due to the unique biochemical nature of this mutation.


Assuntos
Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Fatores de Transcrição/genética , Animais , Anormalidades do Olho , Heterozigoto , Camundongos , Fator de Transcrição Associado à Microftalmia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA