Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 30(6): 1032-40, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19395653

RESUMO

Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2-160 microg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound.


Assuntos
Flavonoides/farmacologia , Mitose/efeitos dos fármacos , Fuso Acromático/metabolismo , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática , Flavonóis , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/fisiologia , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA