Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37877815

RESUMO

The evolution of Li-ion rechargeable batteries has driven a demand for systems exceeding the energy density and shape diversity of conventional lithium-ion batteries. Silicon (Si)-based materials, suitable for high-energy-density applications, have been restricted in practical use due to their inherent structural instability and poor conductivities upon electrochemical cycling. Here, we propose a fully printable and free-standing anode, composed of hollow SiOx/C (H-SiOx/C) composite material and an MXene conductive binder, exhibiting high specific capacity, structural reliability, and superior ionic conductivity without any current collector. The hollow structure of H-SiOx/C accommodates volume changes during cycling, while the MXene binder forms a three-dimensional interconnected conducting structure for maintaining the structural integrity of electrodes without a current collector. Furthermore, the printability and free-standing nature of the H-SiOx/C/MXene anode are validated in both coin-type full cell and heart-shaped pouch cell configurations through a straightforward stencil printing technique. This work establishes a foundation for advanced Si-based anodes, enhancing performance and design flexibility and potentially contributing to practical printable battery systems.

2.
Biosensors (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36831961

RESUMO

Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used as an electrochromic material that exhibits excellent electrochromic performance with high thermal and mechanical stability. However, in a solid film-type WO3 layer, the coloration time was long due to its limited surface area and long diffusion paths of lithium ions (Li-ions). In this study, we attempted to fabricate a fibrous structure of WO3@poly(ethylene oxide) (PEO) composites through electrospinning. The fibrous and porous layer showed a faster coloration time due to a short Li-ion diffusion path. Additionally, PEO in fibers supports Li-ions being quickly transported into the WO3 particles through their high ionic conductivity. The optimized WO3@PEO fibrous structure showed 61.3 cm2/C of high coloration efficiency, 1.6s fast coloration time, and good cycle stability. Lastly, the electrochromic device was successfully fabricated on fabric using gel electrolytes and a conductive knitted fabric as a substrate and showed a comparable color change through a voltage change from -2.5 V to 1.5 V.


Assuntos
Dispositivos Eletrônicos Vestíveis , Transporte Biológico , Difusão , Condutividade Elétrica , Eletrodos , Lítio
3.
Biosensors (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36671853

RESUMO

With the increasing market share of ready-to-cook foods, accurate determination of the food freshness and thus food safety has emerged as a concern. To commercialize and popularize food sensing technologies, food sensors with diverse functionalities, low cost, and facile use must be developed. This paper proposes printable sensors based on a hydrogel-containing pH indicator to detect ammonia gas. The sensors were composed of biocompatible polymers such as 2-hydroxyethyl methacrylate (HEMA) and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (MAETC). The p(HEMA-MAETC) hydrogel sensor with bromothymol blue (BTB) demonstrated visible color change as a function of ammonia concentration during food spoilage. Furthermore, polyacrylonitrile (PAN) was added to improve transport speed of ammonium ions as the matrix in the sensors and optimized the viscosity to enable successful printing. The color changed within 3 min at ammonia concentration of 300 ppb and 1 ppm, respectively. The sensor exhibited reproducibility over 10 cycles and selective exposure to various gases generated during the food spoilage process. In an experiment involving pork spoilage, the color change was significant before and after exposure to ammonia gas within 8 h in ambient conditions. The proposed sensor can be integrated in bar codes and QR codes that are easily mass produced.


Assuntos
Amônia , Hidrogéis , Amônia/análise , Colorimetria , Reprodutibilidade dos Testes , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA