Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509696

RESUMO

Transjugular intrahepatic portosystemic shunt (TIPS) implantation is an effective treatment of portal hypertension in patients with decompensated liver cirrhosis. However, some patients develop TIPS thrombosis with recurrence of portal hypertension. The role of platelets in TIPS thrombosis and the necessity of antiplatelet therapy is unclear. Therefore, we aimed to study platelet function in patients with liver cirrhosis prior to and after TIPS implantation. Platelet aggregation was tested in peripheral and portal-vein blood patient samples on the day (D) of TIPS implantation (D0), D4 and D30 following the procedure (platelet count above 100 × 103/µL, aspirin starting on D5) using whole-blood impedance aggregometry (WBIA) and light transmission aggregometry (LTA). In addition, surface platelet activation markers (P-selectin, activated GPIIb/IIIa) and platelet-neutrophil complexes (PNCs) were assessed by flow cytometry. Thrombin receptor activating peptide 6 (TRAP-6), adenosine diphosphate (ADP) and arachidonic acid (AA) were used as agonists. Healthy subjects were included as controls. Agonist-induced platelet aggregation was reduced (WBIA: TRAP-6 p < 0.01, ADP p < 0.01, AA p < 0.001; LTA: TRAP-6 p = 0.13, ADP p = 0.05, AA p < 0.01) in patients (D0, n = 13) compared with healthy subjects (n = 9). While surface activation markers at baseline were negligibly low, the percentage of PNCs was higher in patients than in controls (p < 0.05). ADP-induced P-selectin expression was increased (p < 0.001), whereas TRAP-6-induced GPIIb/IIIa activation was impaired (p < 0.001) in patients versus controls. PNC formation in response to agonists was not different between groups. Results did not differ between peripheral and portal-vein blood of patients (D0, n = 11) and did not change over time (D0, D4, D30) following TIPS implantation (n = 9). In summary, patients with decompensated liver cirrhosis display in vitro platelet aggregation defects in response to various agonists. Defective aggregation persists upon TIPS implantation. Therefore, we conclude that antiplatelet treatment to prevent TIPS thrombosis is questionable.

2.
Front Immunol ; 14: 1184010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520561

RESUMO

Introduction: Serotonin is involved in leukocyte recruitment during inflammation. Deficiency of the serotonin transporter (SERT) is associated with metabolic changes in humans and mice. A possible link and interaction between the inflammatory effects of serotonin and metabolic derangements in SERT-deficient mice has not been investigated so far. Methods: SERT-deficient (Sert -/-) and wild type (WT) mice were fed a high-fat diet, starting at 8 weeks of age. Metabolic phenotyping (metabolic caging, glucose and insulin tolerance testing, body and organ weight measurements, qPCR, histology) and assessment of adipose tissue inflammation (flow cytometry, histology, qPCR) were carried out at the end of the 19-week high-fat diet feeding period. In parallel, Sert -/- and WT mice received a control diet and were analyzed either at the time point equivalent to high-fat diet feeding or as early as 8-11 weeks of age for baseline characterization. Results: After 19 weeks of high-fat diet, Sert -/- and WT mice displayed similar whole-body and fat pad weights despite increased relative weight gain due to lower starting body weight in Sert -/-. In obese Sert -/- animals insulin resistance and liver steatosis were enhanced as compared to WT animals. Leukocyte accumulation and mRNA expression of cytokine signaling mediators were increased in epididymal adipose tissue of obese Sert -/- mice. These effects were associated with higher adipose tissue mRNA expression of the chemokine monocyte chemoattractant protein 1 and presence of monocytosis in blood with an increased proportion of pro-inflammatory Ly6C+ monocytes. By contrast, Sert -/- mice fed a control diet did not display adipose tissue inflammation. Discussion: Our observations suggest that SERT deficiency in mice is associated with inflammatory processes that manifest as increased adipose tissue inflammation upon chronic high-fat diet feeding due to enhanced leukocyte recruitment.


Assuntos
Dieta Hiperlipídica , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Aumento de Peso , RNA Mensageiro/metabolismo
3.
Hamostaseologie ; 43(2): 110-121, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35913081

RESUMO

Coronary artery disease, including myocardial infarction (MI), remains a leading cause of global mortality. Rapid reperfusion therapy is key to the improvement of patient outcome but contributes substantially to the final cardiac damage. This phenomenon is called "ischemia/reperfusion injury (IRI)." The underlying mechanisms of IRI are complex and not fully understood. Contributing cellular and molecular mechanisms involve the formation of microthrombi, alterations in ion concentrations, pH shifts, dysregulation of osmolality, and, importantly, inflammation. Beyond their known action as drivers of the development of coronary plaques leading to MI, platelets have been identified as important mediators in myocardial IRI. Circulating platelets are activated by the IRI-provoked damages in the vascular endothelium. This leads to platelet adherence to the reperfused endothelium, aggregation, and the formation of microthrombi. Furthermore, activated platelets release vasoconstrictive substances, act via surface molecules, and enhance leukocyte infiltration into post-IR tissue, that is, via platelet-leukocyte complexes. A better understanding of platelet contributions to myocardial IRI, including their interaction with other lesion-associated cells, is necessary to develop effective treatment strategies to prevent IRI and further improve the condition of the reperfused myocardium. In this review, we briefly summarize platelet properties that modulate IRI. We also describe the beneficial impacts of antiplatelet agents as well as their mechanisms of action in IRI beyond classic effects.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Plaquetas/fisiologia , Infarto do Miocárdio/terapia , Inibidores da Agregação Plaquetária , Miocárdio
4.
Front Cardiovasc Med ; 9: 823549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463762

RESUMO

In addition to their essential role in hemostasis and thrombosis, platelets also modulate inflammatory reactions and immune responses. This is achieved by specialized surface receptors as well as secretory products including inflammatory mediators and cytokines. Platelets can support and facilitate the recruitment of leukocytes into inflamed tissue. The various properties of platelet function make it less surprising that circulating platelets are different within one individual. Platelets have different physical properties leading to distinct subtypes of platelets based either on their function (procoagulant, aggregatory, secretory) or their age (reticulated/immature, non-reticulated/mature). To understand the significance of platelet phenotypic variation, qualitatively distinguishable platelet phenotypes should be studied in a variety of physiological and pathological circumstances. The advancement in proteomics instrumentation and tools (such as mass spectrometry-driven approaches) improved the ability to perform studies beyond that of foundational work. Despite the wealth of knowledge around molecular processes in platelets, knowledge gaps in understanding platelet phenotypes in health and disease exist. In this review, we report an overview of the role of platelet subpopulations in inflammation and a selection of tools for investigating the role of platelet subpopulations in inflammation.

5.
Hamostaseologie ; 41(6): 428-432, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34942655

RESUMO

Thrombus formation has been identified as an integral part in innate immunity, termed immunothrombosis. Activation of host defense systems is known to result in a procoagulant environment. In this system, cellular players as well as soluble mediators interact with each other and their dysregulation can lead to the pathological process of thromboinflammation. These mechanisms have been under intensified investigation during the COVID-19 pandemic. In this review, we focus on the underlying mechanisms leading to thromboinflammation as one trigger of venous thromboembolism.


Assuntos
COVID-19 , Trombose , Tromboembolia Venosa , Humanos , Imunidade Inata , Inflamação , Pandemias , SARS-CoV-2 , Tromboinflamação
6.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065800

RESUMO

Reticulated platelets (RP) are the youngest platelet fraction released into the circulation. These immature platelets have increased RNA content, a larger cell volume, more dense granules, higher levels of surface activation markers and are thought to be more reactive compared to their mature counterparts. RP have been associated with cardiovascular disease, diabetes and increased mortality. Yet only a few animal studies investigating RP have been conducted so far and further investigations are warranted. Established methods to count RP are flow cytometry (staining with thiazole orange or SYTO13) or fully automated hematology analyzers (immature platelet fraction, IPF). IPF has been established as a diagnostic parameter in thrombocytopenia, cardiovascular disease and, in particular, the response to antiplatelet therapy. This review seeks to provide an overview of the key features of RP as well as preanalytical and analytical aspects that need to be considered when working with this platelet population.


Assuntos
Plaquetas/citologia , Separação Celular/métodos , Reconhecimento Automatizado de Padrão/métodos , Animais , Benzotiazóis , Separação Celular/instrumentação , Modelos Animais de Doenças , Feminino , Citometria de Fluxo/métodos , Humanos , Técnicas In Vitro , Camundongos , Contagem de Plaquetas/métodos , Gravidez , Complicações na Gravidez , Prognóstico , Quinolinas , Fatores de Risco , Coloração e Rotulagem , Trombocitopenia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA