Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119206, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026348

RESUMO

Pyruvate kinase isoform M2 (PKM2) is a rate-limiting glycolytic enzyme that is widely expressed in embryonic tissues. The expression of PKM2 declines in some tissues following embryogenesis, while other pyruvate kinase isozymes are upregulated. However, PKM2 is highly expressed in cancer cells and is believed to play a role in supporting anabolic processes during tumour formation. In this study, PKM2 was identified as an inositol 1,4,5-trisphosphate receptor (IP3R)-interacting protein by mass spectrometry. The PKM2:IP3R interaction was further characterized by pull-down and co-immunoprecipitation assays, which showed that PKM2 interacted with all three IP3R isoforms. Moreover, fluorescence microscopy indicated that both IP3R and PKM2 localized at the endoplasmic reticulum. PKM2 binds to IP3R at a highly conserved 21-amino acid site (corresponding to amino acids 2078-2098 in mouse type 1 IP3R isoform). Synthetic peptides (denoted 'TAT-D5SD' and 'D5SD'), based on the amino acid sequence at this site, disrupted the PKM2:IP3R interaction and potentiated IP3R-mediated Ca2+ release both in intact cells (TAT-D5SD peptide) and in a unidirectional 45Ca2+ flux assay on permeabilized cells (D5SD peptide). The TAT-D5SD peptide did not affect the enzymatic activity of PKM2. Reducing PKM2 protein expression using siRNA increased IP3R-mediated Ca2+ signalling in intact cells without altering the ER Ca2+ content. These data identify PKM2 as an IP3R-interacting protein that inhibits intracellular Ca2+ signalling. The elevated expression of PKM2 in cancer cells is therefore not solely connected to its canonical role in glycolytic metabolism, rather PKM2 also has a novel non-canonical role in regulating intracellular signalling.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Cell Death Differ ; 29(4): 788-805, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750538

RESUMO

Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.


Assuntos
Apoptose , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Proteína bcl-X , Cálcio/metabolismo , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteína bcl-X/metabolismo
3.
J Cell Sci ; 134(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33277379

RESUMO

Protein kinase C (PKC) signaling is a highly conserved signaling module that plays a central role in a myriad of physiological processes, ranging from cell proliferation to cell death, via various signaling pathways, including MAPK signaling. Stress granules (SGs) are non-membranous cytoplasmic foci that aggregate in cells exposed to environmental stresses. Here, we explored the role of SGs in PKC/MAPK signaling activation in fission yeast. High-heat stress (HHS) induced Pmk1 MAPK activation and Pck2 translocation from the cell tips into poly(A)-binding protein (Pabp)-positive SGs. Pck2 dispersal from the cell tips required Pck2 kinase activity, and constitutively active Pck2 exhibited increased translocation to SGs. Importantly, Pmk1 deletion impaired Pck2 recruitment to SGs, indicating that MAPK activation stimulates Pck2 SG translocation. Consistently, HHS-induced SGs delayed Pck2 relocalization at the cell tips, thereby blocking subsequent Pmk1 reactivation after recovery from HHS. HHS partitioned Pck2 into the Pabp-positive SG-containing fraction, which resulted in reduced Pck2 abundance and kinase activity in the soluble fraction. Taken together, these results indicate that MAPK-dependent Pck2 SG recruitment serves as a feedback mechanism to intercept PKC/MAPK activation induced by HHS, which might underlie PKC-related diseases.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Grânulos Citoplasmáticos/metabolismo , Retroalimentação , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Estresse Fisiológico
4.
Cells ; 9(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979185

RESUMO

Being the largest the Ca2+ store in mammalian cells, endoplasmic reticulum (ER)-mediated Ca2+ signalling often involves both Ca2+ release via inositol 1, 4, 5-trisphosphate receptors (IP3R) and store operated Ca2+ entries (SOCE) through Ca2+ release activated Ca2+ (CRAC) channels on plasma membrane (PM). IP3Rs are functionally coupled with CRAC channels and other Ca2+ handling proteins. However, it still remains less well defined as to whether IP3Rs could regulate ER-mediated Ca2+ signals independent of their Ca2+ releasing ability. To address this, we generated IP3Rs triple and double knockout human embryonic kidney (HEK) cell lines (IP3Rs-TKO, IP3Rs-DKO), and systemically examined ER Ca2+ dynamics and CRAC channel activity in these cells. The results showed that the rate of ER Ca2+ leakage and refilling, as well as SOCE were all significantly reduced in IP3Rs-TKO cells. And these TKO effects could be rescued by over-expression of IP3R3. Further, results showed that the diminished SOCE was caused by NEDD4L-mediated ubiquitination of Orai1 protein. Together, our findings indicate that IP3R3 is one crucial player in coordinating ER-mediated Ca2+ signalling.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sinalização do Cálcio , Movimento Celular , Proliferação de Células , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteína ORAI1/metabolismo , Isoformas de Proteínas/metabolismo
5.
Annu Rev Physiol ; 82: 151-176, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31730387

RESUMO

In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Šaway from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Regulação Alostérica , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética
6.
FASEB J ; 33(9): 10193-10206, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199885

RESUMO

The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-γ (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtiö, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Ouabaína/farmacologia , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células COS , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Glucose/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Quinases/efeitos dos fármacos , Proteoma , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos
7.
Cell Mol Life Sci ; 76(19): 3843-3859, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30989245

RESUMO

Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Células COS , Células Cultivadas , Chlorocebus aethiops , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Deleção de Sequência
8.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt B): 1733-1744, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29777722

RESUMO

Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Suscetibilidade a Doenças , Ataxias Espinocerebelares/etiologia , Ataxias Espinocerebelares/metabolismo , Animais , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mutação , Células de Purkinje/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(18): 4661-4666, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416699

RESUMO

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an IP3-gated ion channel that releases calcium ions (Ca2+) from the endoplasmic reticulum. The IP3-binding sites in the large cytosolic domain are distant from the Ca2+ conducting pore, and the allosteric mechanism of how IP3 opens the Ca2+ channel remains elusive. Here, we identify a long-range gating mechanism uncovered by channel mutagenesis and X-ray crystallography of the large cytosolic domain of mouse type 1 IP3R in the absence and presence of IP3 Analyses of two distinct space group crystals uncovered an IP3-dependent global translocation of the curvature α-helical domain interfacing with the cytosolic and channel domains. Mutagenesis of the IP3R channel revealed an essential role of a leaflet structure in the α-helical domain. These results suggest that the curvature α-helical domain relays IP3-controlled global conformational dynamics to the channel through the leaflet, conferring long-range allosteric coupling from IP3 binding to the Ca2+ channel.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico , Regulação Alostérica , Animais , Cristalografia por Raios X , Humanos , Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
10.
Proc Natl Acad Sci U S A ; 111(38): E3966-75, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201980

RESUMO

The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.


Assuntos
Autofagia , Sinalização do Cálcio , Proteínas de Ligação ao GTP/metabolismo , Doença de Huntington/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Processamento de Proteína Pós-Traducional , Transglutaminases/metabolismo , Regulação Alostérica/genética , Animais , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Células PC12 , Proteína 2 Glutamina gama-Glutamiltransferase , Estrutura Terciária de Proteína , Ratos , Transglutaminases/genética
11.
Cell Calcium ; 54(2): 111-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747049

RESUMO

We examined ACh-induced [Ca2+]i dynamics in pancreatic acinar cells prepared from mAChR subtype-specific knockout (KO) mice. ACh did not induce any [Ca2+]i increase in the cells isolated from M1/M3 double KO mice. In the cells from M3KO mice, ACh (0.3-3 µM) caused a monotonic [Ca2+]i increase. However, we found characteristic oscillatory [Ca2+]i increases in cells from M1KO mice in lower concentrations of ACh (0.03-0.3 µM). We investigated the receptor specific pattern of [Ca2+]i increase in COS-7 cells transfected with M1 or M3 receptors. ACh induced the oscillatory [Ca2+]i increase in M3 expressing cells, but not in cells expressing M1, which exhibited monotonic [Ca2+]i increases. IP3 production detected in fluorescent indicator co-transfected cells was higher in M1 than in M3 expressing cells. From the examination of four types of M1/M3 chimera receptors we found that the carboxyl-terminal region of M3 was responsible for the generation of Ca2+ oscillations. The present results suggest that the oscillatory Ca2+ increase in response to M3 stimulation is dependent upon a moderate IP3 increase, which is suitable for causing Ca(2+)-dependent IP3-induced Ca2+ release. The C-terminal domain of M3 may contribute as a regulator of the efficiency of Gq and PLC cooperation.


Assuntos
Cálcio/metabolismo , Pâncreas/metabolismo , Receptor Muscarínico M1/fisiologia , Receptor Muscarínico M3/fisiologia , Acetilcolina/farmacologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Técnicas In Vitro , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Receptor Muscarínico M1/deficiência , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M3/efeitos dos fármacos
12.
Anal Biochem ; 433(2): 95-101, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23079506

RESUMO

The methylation of DNA, RNA, and proteins plays crucial roles in numerous biological processes, including epigenetic control, virus replication, and cell differentiation. In mammals, the rate-limiting step of the S-adenosylmethionine-dependent methylation process is exclusively controlled by S-adenosylhomocysteine (S-AdoHcy) hydrolase (SAHH). SAHH hydrolyzes S-AdoHcy to adenosine and homocysteine (Hcy) and is therefore a potential therapeutic target for various diseases, including cancer, malaria, and viral diseases. However, a simple and highly sensitive assay for the evaluation of SAHH activity, particularly for drug discovery, had not yet been developed. Here we present the development of a fluorescence-based assay for the measurement of SAHH activity in biological samples. We combined the advantages of the detection of fluorescent thiol groups in Hcy by ThioGlo1 with the S-AdoHcy-driven enzyme-coupled reaction. Our results confirmed the reliability of the proposed assay for the measurement of the SAHH activity of purified SAHH and showed the potential of this assay for the measurement of the SAHH activity of biological samples. Therefore, the proposed SAHH activity assay may be utilized in clinical laboratories and in high-throughput screenings for the identification of new SAHH inhibitors with potentially beneficial effects on numerous pathologies.


Assuntos
Adenosil-Homocisteinase/química , Bioensaio/métodos , S-Adenosil-Homocisteína/química , Adenosina/química , Adenosina/metabolismo , Adenosil-Homocisteinase/metabolismo , Fluorescência , Células HeLa , Homocisteína/química , Homocisteína/metabolismo , Humanos , S-Adenosil-Homocisteína/metabolismo
13.
J Neurosci ; 32(42): 14794-803, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077063

RESUMO

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus generates a 24 h rhythm of sleep and arousal. While neuronal spiking activity in the SCN provides a functional circadian oscillator that propagates throughout the brain, the ultradian sleep-wake state is regulated by the basal forebrain/preoptic area (BF/POA). How this SCN circadian oscillation is integrated into the shorter sleep-wake cycles remains unclear. We examined the temporal patterns of neuronal activity in these key brain regions in freely behaving rats. Neuronal activity in various brain regions presented diurnal rhythmicity and/or sleep-wake state dependence. We identified a diurnal rhythm in the BF/POA that was selectively degraded when diurnal arousal patterns were disrupted by acute brain serotonin depletion despite robust circadian spiking activity in the SCN. Local blockade of serotonergic transmission in the BF/POA was sufficient to disrupt the diurnal sleep-wake rhythm of mice. These results suggest that the serotonergic system enables the BF/POA to couple the SCN circadian signal to ultradian sleep-wake cycles, thereby providing a potential link between circadian rhythms and psychiatric disorders.


Assuntos
Ciclos de Atividade/fisiologia , Relógios Circadianos/fisiologia , Serotonina/fisiologia , Fases do Sono/fisiologia , Núcleo Supraquiasmático/fisiologia , Vigília/fisiologia , Ciclos de Atividade/efeitos dos fármacos , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/fisiologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/fisiologia , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Fases do Sono/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Vigília/efeitos dos fármacos
14.
Sci Signal ; 5(225): pe24, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22623752

RESUMO

The inositol 1,4,5-trisphosphate (IP3) receptor is an IP3-gated calcium ion (Ca²âº) channel that mediates intracellular IP3-Ca²âº signaling. A fundamental question--how IP3 gates the Ca²âº channel within the IP3 receptor--remains unanswered. A new crystal structure of the N-terminal region of the IP3 receptor reveals allosteric changes by ligand binding and its similarity to the corresponding region of ryanodine receptor. Docking of the crystal structures in the electron microscopy map and an IP3 receptor-ryanodine receptor chimera consistently supported a coherent gating mechanism in these receptors. An intriguing feature was the long distance between the IP3-binding sites and the Ca²âº channel, suggesting that long-range allosteric coupling occurs between these regions upon gating of the channel. These results help integrate previous knowledge on the IP3 and ryanodine receptors and also provide a new framework for understanding the gating mechanism.


Assuntos
Sinalização do Cálcio/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Receptores de Inositol 1,4,5-Trifosfato/ultraestrutura , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/ultraestrutura , Relação Estrutura-Atividade
15.
Eur J Neurosci ; 35(11): 1762-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22625848

RESUMO

Serotonin (5-HT) neurons have been implicated in the modulation of many physiological functions, including mood regulation, feeding, and sleep. Impaired or altered 5-HT neurotransmission appears to be involved in depression and anxiety symptoms, as well as in sleep disorders. To investigate brain 5-HT functions in sleep, we induced 5-HT deficiency through acute tryptophan depletion in rats by intraperitoneally injecting a tryptophan-degrading enzyme called tryptophan side chain oxidase I (TSOI). After the administration of TSOI (20 units), plasma tryptophan levels selectively decreased to 1-2% of those of controls within 2 h, remained under 1% for 12-24 h, and then recovered between 72 and 96 h. Following plasma tryptophan levels, brain 5-HT levels decreased to ∼30% of the control level after 6 h, remained at this low level for 20-30 h, and returned to normal after 72 h. In contrast, brain norepinephreine and dopamine levels remained unchanged. After TSOI injection, the circadian rhythms of the sleep-wake cycle and locomotive activity were lost and broken into minute(s) ultradian alternations. The hourly slow-wave sleep (SWS) time significantly increased at night, but decreased during the day, whereas rapid eye movement sleep was significantly reduced during the day. However, daily total (cumulative) SWS time was retained at the normal level. As brain 5-HT levels gradually recovered 48 h after TSOI injection, the circadian rhythms of sleep-wake cycles and locomotive activity returned to normal. Our results suggest that 5-HT with a rapid turnover rate plays an important role in the circadian rhythm of sleep-wake cycles.


Assuntos
Química Encefálica/fisiologia , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Serotonina/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/deficiência , Triptofano/antagonistas & inibidores , Triptofano/sangue , Triptofano/deficiência
16.
Bioorg Med Chem Lett ; 21(1): 377-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21134746

RESUMO

Potent transglutaminase inhibitors were obtained from disulfide compounds, cystamine, dimethyl cystine, and dimethyl homocystine. The disulfide bond and thiophene ring play an important role in inhibitory activity of synthesized aryl ß-amino ketones.


Assuntos
Inibidores Enzimáticos/química , Cetonas/química , Transglutaminases/antagonistas & inibidores , Dissulfetos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Cetonas/síntese química , Cetonas/farmacologia , Relação Estrutura-Atividade , Tiofenos/química , Transglutaminases/metabolismo
17.
Neuron ; 68(5): 865-78, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21145001

RESUMO

Deranged Ca(2+) signaling and an accumulation of aberrant proteins cause endoplasmic reticulum (ER) stress, which is a hallmark of cell death implicated in many neurodegenerative diseases. However, the underlying mechanisms are elusive. Here, we report that dysfunction of an ER-resident Ca(2+) channel, inositol 1,4,5-trisphosphate receptor (IP(3)R), promotes cell death during ER stress. Heterozygous knockout of brain-dominant type1 IP(3)R (IP(3)R1) resulted in neuronal vulnerability to ER stress in vivo, and IP(3)R1 knockdown enhanced ER stress-induced apoptosis via mitochondria in cultured cells. The IP(3)R1 tetrameric assembly was positively regulated by the ER chaperone GRP78 in an energy-dependent manner. ER stress induced IP(3)R1 dysfunction through an impaired IP(3)R1-GRP78 interaction, which has also been observed in the brain of Huntington's disease model mice. These results suggest that IP(3)R1 senses ER stress through GRP78 to alter the Ca(2+) signal to promote neuronal cell death implicated in neurodegenerative diseases.


Assuntos
Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cálcio/metabolismo , Morte Celular/fisiologia , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Metabolismo Energético/fisiologia , Técnicas de Silenciamento de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
18.
Bioorg Med Chem Lett ; 20(3): 1141-4, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053561

RESUMO

Aryl beta-aminoethyl ketones were discovered as potent inhibitors of tissue transglutaminase. Heteroaryl-like thiophene groups and N-benzyl N-t-butyl aminoethyl group are critical to the strong inhibitory activity of aryl beta-aminoethyl ketones.


Assuntos
Cetonas/química , Transglutaminases/antagonistas & inibidores , Animais , Cobaias , Cetonas/metabolismo , Cetonas/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Transglutaminases/metabolismo
19.
Neurosci Lett ; 391(3): 102-7, 2006 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-16198054

RESUMO

Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) acts as a ligand-gated channel that mediates neuronal signals by releasing Ca(2+) from the endoplasmic reticulum. The three-dimensional (3D) structure of tetrameric IP(3)R has been demonstrated by using electron microscopy (EM) with static specimens; however, the dynamic aspects of the IP(3)R structure have never been visualized in a native environment. Here we attempt to measure the surface topography of IP(3)R in solution using atomic force microscopy (AFM). AFM revealed large protrusions extending approximately 4.3 nm above a flat membrane prepared from Spodoptera frugiperda (Sf9) cells overexpressing mouse type 1 IP(3)R (Sf9-IP(3)R1). The average diameter of the large protrusions was approximately 32 nm. A specific antibody against a cytosolic epitope close to the IP(3)-binding site enabled us to gold-label the Sf9-IP(3)R1 membrane as confirmed by EM. AFM images of the gold-labeled membrane revealed 7.7-nm high protrusions with a diameter of approximately 30 nm, which should be IP(3)R1-antibody complexes. Authentic IP(3)R1 immuno-purified from mouse cerebella had approximately the same dimensions as those of the IP(3)R-like protrusions on the membrane. Altogether, these results suggest that the large protrusions on the Sf9-IP(3)R1 membrane correspond to the cytosolic domain of IP(3)R1. Our study provides the first 3D representation of individual IP(3)R1 particles in an aqueous solution.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/ultraestrutura , Microscopia de Força Atômica/métodos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Água/química , Receptores de Inositol 1,4,5-Trifosfato , Conformação Proteica , Soluções
20.
J Mol Biol ; 336(1): 155-64, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14741211

RESUMO

Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Microscopia Crioeletrônica , Receptores de Inositol 1,4,5-Trifosfato , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA