Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 48, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409540

RESUMO

In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water. Zooplankton host identity had stronger effects on bacterial composition than seasonal variation, with the composition of gut bacterial communities showing host-specific clustering patterns. Although bacterial compositions and dominating core bacteria were different between zooplankton hosts, higher gut bacteria diversity and more bacteria contributing to the temporal variation were found in Temora and Pseudocalanus, compared to Acartia and Synchaeta. Diet diatom and filamentous cyanobacteria negatively correlated with gut bacteria diversity, but the difference in diet composition did not explain the dissimilarity of gut bacteria composition, suggesting a general effect of diet on the inner conditions in the zooplankton gut. Synchaeta maintained high stability of gut bacterial communities with unexpectedly low bacteria-bacteria interactions as compared to the copepods, indicating host-specific regulation traits. Our results suggest that the patterns of gut bacteria dynamics are host-specific and the variability of gut bacteria is not only related to host taxonomy but also related to host behavior and life history traits.


Assuntos
Microbioma Gastrointestinal , Microbiota , Rotíferos , Animais , Zooplâncton/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Microbioma Gastrointestinal/genética
2.
Ecol Evol ; 13(10): e10619, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869431

RESUMO

Establishing wetlands for nutrient capture and biodiversity support may introduce trade-offs between environmentally beneficial functions and detrimental greenhouse gas emissions. Investigating the interaction of nutrient capture, primary production, greenhouse gas production and biodiversity support is imperative to understanding the overall function of wetlands and determining possible beneficial synergistic effects and trade-offs. Here, we present temporally replicated data from 17 wetlands in hemi-boreal Sweden. We explored the relationship between nutrient load, primary producing algae, production of methane and nitrous oxide, and emergence rates of chironomids to determine what factors affected each and how they related to each other. Chironomid emergence rates correlated positively with methane production and negatively with nitrous oxide production, where water temperature was the main driving factor. Increasing nutrient loads reduced methanogenesis through elevated nitrogen concentrations, while simultaneously enhancing nitrous oxide production. Nutrient loads only indirectly increased chironomid emergence rates through increased chlorophyll-a concentration, via increased phosphorus concentrations, with certain taxa and food preference functional groups benefitting from increased chlorophyll-a concentrations. However, water temperature seemed to be the main driving factor for chironomid emergence rates, community composition and diversity, as well as for greenhouse gas production. These findings increase our understanding of the governing relationships between biodiversity support and greenhouse gas production, and should inform future management when constructing wetlands.

3.
Microb Ecol ; 86(4): 2477-2487, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37314477

RESUMO

Gut microbes play important roles for their hosts. Previous studies suggest that host-microbial systems can form long-term associations over evolutionary time and the dynamic changes of the intestinal system may represent major driving forces and contribute to insect dietary diversification and speciation. Our study system includes a set of six closely related leaf beetle species (Galerucella spp.) and our study aims to separate the roles of host phylogeny and ecology in determining the gut microbial community and to identify eventual relationship between host insects and gut bacteria. We collected adult beetles from their respective host plants and quantified their microbial community using 16S rRNA sequencing. The results showed that the gut bacteria community composition was structured by host beetle phylogeny, where more or less host-specific gut bacteria interact with the different Galerucella species. For example, the endosymbiotic bacteria Wolbachia was found almost exclusively in G. nymphaea and G. sagittariae. Diversity indicators also suggested that α- and ß-diversities of gut bacteria communities varied among host beetle species. Overall, our results suggest a phylogenetically controlled co-occurrence pattern between the six closely related Galerucella beetles and their gut bacteria, indicating the potential of co-evolutionary processes occurring between hosts and their gut bacterial communities.


Assuntos
Besouros , Microbioma Gastrointestinal , Animais , Besouros/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Insetos , Bactérias/genética
4.
Ecol Evol ; 13(5): e10065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223309

RESUMO

The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.

5.
Plants (Basel) ; 12(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678999

RESUMO

Plants are attacked by multiple herbivores, and depend on a precise regulation of responses to cope with a wide range of antagonists. Simultaneous herbivory can occur in different plant compartments, which may pose a serious threat to plant growth and reproduction. In particular, plants often face co-occurring root and floral herbivory, but few studies have focused on such interactions. Here, we investigated in the field the combined density-dependent effects of root-chewing cebrionid beetle larvae and flower-chewing pierid caterpillars on the fitness and defense of a semiarid Brassicaceae herb. We found that the fitness impact of both herbivore groups was independent and density-dependent. Increasing root herbivore density non-significantly reduced plant fitness, while the relationship between increasing floral herbivore density and the reduction they caused in both seed number and seedling emergence was non-linear. The plant defensive response was non-additive with regard to the different densities of root and floral herbivores; high floral herbivore density provoked compensatory investment in reproduction, and this tolerance response was combined with aboveground chemical defense induction when also root herbivore density was high. Plants may thus prioritize specific trait combinations in response to varying combined below- and aboveground herbivore densities to minimize negative impacts on fitness.

6.
Biol Rev Camb Philos Soc ; 97(6): 2127-2161, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35950352

RESUMO

Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


Assuntos
Ecossistema , Invertebrados , Animais , Cadeia Alimentar , Biodiversidade , Aves , Peixes
7.
Ecol Evol ; 12(12): e9701, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590338

RESUMO

Wolf spiders are typically the most common group of arthropod predators on both lake and marine shorelines because of the high prey availability in these habitats. However, shores are also harsh environments due to flooding and, in proximity to marine waters, to toxic salinity levels. Here, we describe the spider community, prey availabilities, and spider diets between shoreline sites with different salinities, albeit with comparatively small differences (5‰ vs. 7‰). Despite the small environmental differences, spider communities between lower and higher saline sites showed an almost complete species turnover. At the same time, differences in prey availability or spider gut contents did not match changes in spider species composition but rather changed with habitat characteristics within a region, where spiders collected at sites with thick wrack beds had a different diet than sites with little wrack. These data suggest that shifts in spider communities are due to habitat characteristics other than prey availabilities, and the most likely candidate restricting species in high salinity would be saline sensitivity. At the same time, species absence from low-saline habitats remains unresolved.

8.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849825

RESUMO

Galerucella (Coleoptera: Chrysomelidae) is a leaf beetle genus that has been extensively used for ecological and evolutionary studies. It has also been used as biological control agent against invading purple loosestrife in North America, with large effects on biodiversity. Here, we report genome assembly and annotation of three closely related Galerucella species: G. calmariensis, G. pusilla, and G. tenella. The three assemblies have a genome size ranging from 460 to 588 Mbp, with N50 from 31,588 to 79,674 kbp, containing 29,202 to 40,929 scaffolds. Using an ab initio evidence-driven approach, 30,302 to 33,794 protein-coding genes were identified and functionally annotated. These draft genomes will contribute to the understanding of host-parasitoid interactions, evolutionary comparisons of leaf beetle species and future population genomics studies.


Assuntos
Besouros , Animais , Evolução Biológica , Besouros/genética , Genoma , América do Norte
9.
Ecol Appl ; 31(8): e02445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448315

RESUMO

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Assuntos
Malus , Polinização , Animais , Abelhas , Produtos Agrícolas , Frutas , Insetos
10.
New Phytol ; 231(5): 1770-1783, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960441

RESUMO

Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.


Assuntos
Micobioma , Quercus , Ecossistema , Genótipo , Micobioma/genética , Estações do Ano
11.
Genome Biol Evol ; 12(5): 522-534, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282901

RESUMO

Endoparasitoid wasps are important natural enemies of many insect species and are major selective forces on the host immune system. Despite increased interest in insect antiparasitoid immunity, there is sparse information on the evolutionary dynamics of biological pathways and gene regulation involved in host immune defense outside Drosophila species. We de novo assembled transcriptomes from two beetle species and used time-course differential expression analysis to investigate gene expression differences in closely related species Galerucella pusilla and G. calmariensis that are, respectively, resistant and susceptible against parasitoid infection by Asecodes parviclava parasitoids. Approximately 271 million and 224 million paired-ended reads were assembled and filtered to form 52,563 and 59,781 transcripts for G. pusilla and G. calmariensis, respectively. In the whole-transcriptome level, an enrichment of functional categories related to energy production, biosynthetic process, and metabolic process was exhibited in both species. The main difference between species appears to be immune response and wound healing process mounted by G. pusilla larvae. Using reciprocal BLAST against the Drosophila melanogaster proteome, 120 and 121 immune-related genes were identified in G. pusilla and G. calmariensis, respectively. More immune genes were differentially expressed in G. pusilla than in G. calmariensis, in particular genes involved in signaling, hematopoiesis, and melanization. In contrast, only one gene was differentially expressed in G. calmariensis. Our study characterizes important genes and pathways involved in different immune functions after parasitoid infection and supports the role of signaling and hematopoiesis genes as key players in host immunity in Galerucella against parasitoid wasps.


Assuntos
Besouros/genética , Besouros/imunologia , Regulação da Expressão Gênica , Genes de Insetos , Interações Hospedeiro-Parasita/imunologia , Himenópteros/fisiologia , Imunocompetência , Animais , Evolução Biológica , Besouros/parasitologia , Drosophila melanogaster/genética , Filogenia , Transcriptoma
12.
Sci Total Environ ; 704: 135452, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31810688

RESUMO

Wetlands are interconnected with the larger surrounding landscape through the hydrological cycling of water and waterborne substances. Therefore, the borders of individual wetlands may not be appropriate landscape system boundaries for understanding large-scale functions and ecosystem services of wetlandscapes (wetland network - landscape systems), and how these can be impacted by climate and land-use changes. Recognizing that such large-scale behaviours may not be easily predicted by simple extrapolation of individual wetland behaviours, we here investigate properties of 15 Swedish wetlandscapes in the extensive (22 650 km2) Norrström drainage basin (NDB) comprising as many as 1699 wetlands. Results based on wetland survey data in combination with GIS-based ecohydrological analyses showed that wetlands located in wetlandscapes above a certain size (in the NDB: ~250 km2) consistently formed networks with characteristics required to support key ecosystem services such as nutrient/pollutant retention and biodiversity support. This was in contrast to smaller wetlandscapes (<250 km2), which had smaller and less diverse wetlands with insufficient throughflow to significantly impact large-scale flows of water and nutrients/pollutants. The existence of such wetlandscape-size thresholds is consistent with scale-dependent flow accumulation patterns in catchments, suggesting likely transferability of this result also to other regions.

13.
Sci Rep ; 9(1): 15309, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653955

RESUMO

Insects searching for resources are exposed to a complexity of mixed odours, often involving both attractant and repellent substances. Understanding how insects respond to this complexity of cues is crucial for understanding consumer-resource interactions, but also to develop novel tools to control harmful pests. To advance our understanding of insect responses to combinations of attractive and repellent odours, we formulated three qualitative hypotheses; the response-ratio hypothesis, the repellent-threshold hypothesis and the odour-modulation hypothesis. The hypotheses were tested by exposing Drosophila melanogaster in a wind tunnel to combinations of vinegar as attractant and four known repellents; benzaldehyde, 1-octen-3-ol, geosmin and phenol. The responses to benzaldehyde, 1-octen-3-ol and geosmin provided support for the response-ratio hypothesis, which assumes that the behavioural response depends on the ratio between attractants and repellents. The response to phenol, rather supported the repellent-threshold hypothesis, where aversion only occurs above a threshold concentration of the repellent due to overshadowing of the attractant. We hypothesize that the different responses may be connected to the localization of receptors, as receptors detecting phenol are located on the maxillary palps whereas receptors detecting the other odorants are located on the antennae.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Drosophila melanogaster/fisiologia , Repelentes de Insetos/farmacologia , Odorantes , Animais , Bioensaio , Drosophila melanogaster/efeitos dos fármacos , Feminino
14.
R Soc Open Sci ; 6(12): 190326, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31903195

RESUMO

Insect-mediated pollination increases yields of many crop species and some evidence suggests that it also influences crop quality. However, the mechanistic linkages between insect-mediated pollination and crop quality are poorly known. In this study, we explored how different pollination treatments affected fruit set, dry matter content (DMC), mineral content and storability of apples. Apple flowers supplementary pollinated with compatible pollen resulted in higher initial fruit set rates, higher fruit DMC and a tendency for lower fruit potassium (K) : calcium (Ca) ratio than flowers that received natural or no pollination. These variables are related to desirable quality aspects, because higher DMC is connected to higher consumer preference and lower K : Ca ratio is related to lower incidence of postharvest disorders during storage. Using structural equation modelling, we showed an indirect effect of pollination treatment on storability, however mediated by complex interactions between fruit set, fruit weight and K : Ca ratio. The concentrations of several elements in apples (K, zinc, magnesium) were affected by the interaction between pollination treatment and apple weight, indicating that pollination affects element allocation into fruits. In conclusion, our study shows that pollination and the availability of compatible pollen needs to be considered in the management of orchard systems, not only to increase fruit set, but also to increase the quality and potentially the storability of apples.

15.
Mol Ecol ; 28(2): 307-317, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084518

RESUMO

Terrestrial predators on marine shores benefit from the inflow of organisms and matter from the marine ecosystem, often causing very high predator densities and indirectly affecting the abundance of other prey species on shores. This indirect effect may be particularly strong if predators shift diets between seasons. We therefore quantified the seasonal variation in diet of two wolf spider species that dominate the shoreline predator community, using molecular gut content analyses with general primers to detect the full prey range. Across the season, spider diets changed, with predominantly terrestrial prey from May until July and predominantly marine prey (mainly chironomids) from August until October. This pattern coincided with a change in the spider age and size structure, and prey abundance data and resource selection analyses suggest that the higher consumption of chironomids during autumn is due to an ontogenetic diet shift rather than to variation in prey abundance. The analyses suggested that small dipterans with a weak flight capacity, such as Chironomidae, Sphaeroceridae, Scatopsidae and Ephydridae, were overrepresented in the gut of small juvenile spiders during autumn, whereas larger, more robust prey, such as Lepidoptera, Anthomyidae and Dolichopodidae, were overrepresented in the diet of adult spiders during spring. The effect of the inflow may be that the survival and growth of juvenile spiders is higher in areas with high chironomid abundances, leading to higher densities of adult spiders and higher predation rates on the terrestrial prey next spring.


Assuntos
Ecossistema , Cadeia Alimentar , Aranhas/fisiologia , Animais , Chironomidae/classificação , Chironomidae/genética , Dieta , Conteúdo Gastrointestinal/química , Comportamento Predatório/fisiologia , Aranhas/genética
16.
Ecol Evol ; 8(21): 10569-10577, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464828

RESUMO

Many insect species have limited sensory abilities and may not be able to perceive the quality of different resource types while approaching patchily distributed resources. These restrictions may lead to differences in selection rates between separate patches and between different resource types within a patch, which may have consequences for associational effects between resources. In this study, we used an oviposition assay containing different frequencies of apple and banana substrates divided over two patches to compare resource selection rates of wild-type Drosophila melanogaster at the between- and within-patch scales. Next, we compared the wild-type behavior with that of the olfactory-deficient strain Orco 2 and the gustatory-deficient strain Poxn ΔM22-B5 and found comparable responses to patch heterogeneity and similarly strong selection rates for apple at both scales for the wild-type and olfactory-deficient flies. Their oviposition behavior translated into associational susceptibility for apple and associational resistance for banana. The gustatory-deficient flies, on the other hand, no longer had a strong selection rate for apple, strongly differed in between- and within-patch selection rates from the wild-type flies, and caused no associational effects between the resources. Our study suggests that differences in sensory capabilities can affect resource selection at different search behavior scales in different ways and in turn underlie associational effects between resources at different spatial scales.

17.
BMC Ecol ; 18(1): 33, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200936

RESUMO

BACKGROUND: Wetlands are habitats where variation in soil moisture content and associated environmental conditions can strongly affect the survival of herbivorous insects by changing host plant quality and natural enemy densities. In this study, we combined natural enemy exclusion experiments with random survival forest analyses to study the importance of local variation in host plant quality and predation by natural enemies on the egg and larval survival of the leaf beetle Galerucella sagittariae along a soil moisture gradient. RESULTS: Our results showed that the exclusion of natural enemies substantially increased the survival probability of G. sagittariae eggs and larvae. Interestingly, the egg survival probability decreased with soil moisture content, while the larval survival probability instead increased with soil moisture content. For both the egg and larval survival, we found that host plant height, the number of eggs or larvae, and vegetation height explained more of the variation than the soil moisture gradient by itself. Moreover, host plant quality related variables, such as leaf nitrogen, carbon and phosphorus content did not influence the survival of G. sagittariae eggs and larvae. CONCLUSION: Our results suggest that the soil moisture content is not an overarching factor that determines the interplay between factors related to host plant quality and factors relating to natural enemies on the survival of G. sagittariae in different microhabitats. Moreover, the natural enemy exclusion experiments and the random survival forest analysis suggest that natural enemies have a stronger indirect impact on the survival of G. sagittariae offspring than host plant quality.


Assuntos
Besouros/fisiologia , Cadeia Alimentar , Herbivoria , Longevidade , Animais , Besouros/crescimento & desenvolvimento , Umidade , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Biológicos , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Comportamento Predatório , Solo/química
18.
Ecol Evol ; 8(6): 3219-3228, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607019

RESUMO

Parasitoid fitness is influenced by the ability to overcome host defense strategies and by the ability of parasitoid females to select high-quality host individuals. When females are unable to differentiate among hosts, their fitness will decrease with an increasing abundance of resistant hosts. To understand the effect of mixed host populations on female fitness, it is therefore necessary to investigate the ability of female parasitoids to select among hosts. Here, we used behavioral assays, headspace volatile collection, and electrophysiology to study the ability of Asecodes parviclava to use olfactory cues to select between a susceptible host (Galerucella calmariensis) and a resistant host (Galerucella pusilla) from a distance. Our studies show that parasitoid females have the capacity to distinguish the two hosts and that the selection behavior is acquired through experiences during earlier life stages. Further, we identified two volatiles (α-terpinolene and [E]-ß-ocimene) which amounts differ between the two plant-herbivore systems and that caused behavioral and electrophysiological responses. The consequence of this selection behavior is that females have the capacity to avoid laying eggs in G. pusilla, where the egg mortality is higher due to much stronger immune responses toward A. parviclava than in larvae of G. calmariensis.

19.
Trends Ecol Evol ; 33(1): 4-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29113696

RESUMO

Parasite-host and insect-plant research have divergent traditions despite the fact that most phytophagous insects live parasitically on their host plants. In parasitology it is a traditional assumption that parasites are typically highly specialized; cospeciation between parasites and hosts is a frequently expressed default expectation. Insect-plant theory has been more concerned with host shifts than with cospeciation, and more with hierarchies among hosts than with extreme specialization. We suggest that the divergent assumptions in the respective fields have hidden a fundamental similarity with an important role for potential as well as actual hosts, and hence for host colonizations via ecological fitting. A common research program is proposed which better prepares us for the challenges from introduced species and global change.


Assuntos
Interações Hospedeiro-Parasita , Invertebrados/fisiologia , Invertebrados/parasitologia , Vertebrados/fisiologia , Vertebrados/parasitologia , Animais , Insetos/parasitologia , Insetos/fisiologia , Parasitologia , Plantas/parasitologia , Especificidade da Espécie
20.
Sci Rep ; 7(1): 9352, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839208

RESUMO

Neighboring resources can affect insect oviposition behavior when the complexity of sensory information obscures information about host resource availability in heterogeneous resource patches. These effects are referred to as associational effects and are hypothesized to occur through constraints in the sensory processing of the insect during host search, resulting into suboptimal resource use. Because the possibilities to study these constraints on naturally occurring animals are limited, we instead used sensory mutants of Drosophila melanogaster to determine the importance of sensory information in the occurrence of associational effects. We found that oviposition was mainly governed by non-volatile chemical cues and less by volatile cues. Moreover, the loss of gustatory sensilla resulted in random resource selection and eliminated associational effects. In conclusion, our study shows that associational effects do not necessarily depend on constraints in the sensory evaluation of resource quality, but may instead be a direct consequence of distinctive selection behavior between different resources at small scales.


Assuntos
Drosophila melanogaster/fisiologia , Estudos de Associação Genética , Mutação , Oviposição/genética , Sensação/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Sinais (Psicologia) , Feminino , Masculino , Percepção Olfatória/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA