Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 4728, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830864

RESUMO

Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.


Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas , Camundongos Transgênicos , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Camelídeos Americanos/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Imunoglobulina E/imunologia , Humanos , Dependovirus/genética , Dependovirus/imunologia , Imunoglobulina G/imunologia , COVID-19/imunologia , Linfócitos B/imunologia
2.
Rofo ; 2024 May 15.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-38749430

RESUMO

In this paper, we explain the structure and function of different types of figures and provide guidance on how to create effective figures for radiological research publications.Based on scientific literature and our own experience, we have compiled a series of instructions to support the purposeful creation of effective figures for radiological research publications.Effective figures play a crucial role in radiological research publications by clearly visualizing complex content and thereby enhancing its comprehensibility. Different types of figures have distinct strengths that should be strategically employed for optimal impact. The interplay between figures weaves the "common thread" of a publication, facilitating reader comprehension and providing a straightforward path to the answer of the central research question. The systematic coordination (line of evidence) and effective design of individual figures are crucial to compellingly support the publication's central hypothesis.The deliberate creation and coordination of figures in radiological research publications are decisive factors for successful publishing. · Different types of figures have distinct strengths that should be strategically employed for optimal impact.. · The interplay between figures weaves the "common thread" of a publication, facilitating reader comprehension and providing a straightforward path to the answer of the central research question.. · The appropriate coordination of different types of figures enables an effective and precise presentation of the research findings.. · The systematic coordination (line of evidence) and effective design of individual figures are crucial to compellingly support the publication's central hypothesis.. · The deliberate creation and coordination of figures in radiological research publications are decisive factors for successful publishing.. · Pape LJ, Hambach J, Bannas P. Instructions for figures in radiological research publications. Fortschr Röntgenstr 2024; DOI 10.1055/a-2285-3223.

3.
Front Immunol ; 15: 1328306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590528

RESUMO

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo
5.
Front Immunol ; 13: 1010270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389758

RESUMO

Rationale: Recent studies have demonstrated the feasibility of CD38-specific antibody constructs for in vivo imaging of multiple myeloma. However, detecting multiple myeloma in daratumumab-pretreated patients remains difficult due to overlapping binding epitopes of the CD38-specific imaging antibody constructs and daratumumab. Therefore, the development of an alternative antibody construct targeting an epitope of CD38 distinct from that of daratumumab is needed. We report the generation of a fluorochrome-conjugated nanobody recognizing such an epitope of CD38 to detect myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo. Methods: We conjugated the CD38-specific nanobody JK36 to the near-infrared fluorescent dye Alexa Fluor 680. The capacity of JK36AF680 to bind and detect CD38-expressing cells pretreated with daratumumab was evaluated on CD38-expressing tumor cell lines in vitro, on primary myeloma cells from human bone marrow biopsies ex vivo, and in a mouse tumor model in vivo. Results: Fluorochrome-labeled nanobody JK36AF680 showed specific binding to CD38-expressing myeloma cells pretreated with daratumumab in vitro and ex vivo and allowed for specific imaging of CD38-expressing xenografts in daratumumab-pretreated mice in vivo. Conclusions: Our study demonstrates that a nanobody recognizing a distinct, non-overlapping epitope of CD38 allows the specific detection of myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo.


Assuntos
Mieloma Múltiplo , Anticorpos de Domínio Único , Humanos , Animais , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , ADP-Ribosil Ciclase 1/metabolismo , Corantes Fluorescentes , Epitopos
6.
Front Immunol ; 13: 1005800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405759

RESUMO

Nanobodies are well suited for constructing biologics due to their high solubility. We generated nanobodies directed against CD38, a tumor marker that is overexpressed by multiple myeloma and other hematological malignancies. We then used these CD38-specific nanobodies to construct heavy chain antibodies, bispecific killer cell engagers (BiKEs), chimeric antigen receptor (CAR)-NK cells, and nanobody-displaying AAV vectors. Here we review the utility of these nanobody-based constructs to specifically and effectively target CD38-expressing myeloma cells. The promising results of our preclinical studies warrant further clinical studies to evaluate the potential of these CD38-specific nanobody-based constructs for treatment of multiple myeloma.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Biespecíficos/uso terapêutico , ADP-Ribosil Ciclase 1 , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Células Matadoras Naturais
7.
Biomed Pharmacother ; 151: 113104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643072

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has continuously evolved, resulting in the emergence of several variants of concern (VOCs). To study mechanisms of viral entry and potentially identify specific inhibitors, we pseudotyped lentiviral vectors with different SARS-CoV-2 VOC spike variants (D614G, Alpha, Beta, Delta, Omicron/BA.1), responsible for receptor binding and membrane fusion. These SARS-CoV-2 lentiviral pseudoviruses were applied to screen 774 FDA-approved drugs. For the assay we decided to use CaCo2 cells, since they equally allow cell entry through both the direct membrane fusion pathway mediated by TMPRSS2 and the endocytosis pathway mediated by cathepsin-L. The active molecules which showed stronger differences in their potency to inhibit certain SARS-CoV-2 VOCs included antagonists of G-protein coupled receptors, like phenothiazine-derived antipsychotic compounds such as Chlorpromazine, with highest activity against the Omicron pseudovirus. In general, our data showed that the various VOCs differ in their preferences for cell entry, and we were able to identify synergistic combinations of inhibitors. Notably, Omicron singled out by relying primarily on the endocytosis pathway while Delta preferred cell entry via membrane fusion. In conclusion, our data provide new insights into different entry preferences of SARS-CoV-2 VOCs, which might help to identify new drug targets.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Front Immunol ; 13: 838406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651607

RESUMO

CD38 is a target for immunotherapy of multiple myeloma. Llama-derived CD38-specific nanobodies allow easy reformatting into mono-, bi- and multispecific proteins. To evaluate the utility of nanobodies for constructing CD38-specific nanobody-based killer cell engagers (nano-BiKEs), we generated half-life extended nano-BiKEs (HLE-nano-BiKEs) by fusing a CD38-specific nanobody to a CD16-specific nanobody for binding to the Fc-receptor on NK cells and further to an albumin-specific nanobody to extend the half-life in vivo. HLE-nano-BiKEs targeting three different epitopes (E1, E2, E3) of CD38 were expressed in transiently transfected HEK-6E cells. We verified specific and simultaneous binding to CD38 on myeloma cells, CD16 on NK cells, and to albumin. We tested the capacity of these HLE-nano-BiKEs to mediate cytotoxicity against CD38-expressing multiple myeloma cell lines and primary myeloma cells from human bone marrow biopsies in bioluminescence and flowcytometry assays with NK92 cells as effector cells. The results revealed specific time- and dose-dependent cytolysis of CD38+ myeloma cell lines and effective depletion of CD38-expressing multiple myeloma cells from primary human bone marrow samples. Our results demonstrate the efficacy of CD38-specific HLE-nano-BiKEs in vitro and ex vivo, warranting further preclinical evaluation in vivo of their therapeutic potential for the treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Anticorpos de Domínio Único , ADP-Ribosil Ciclase 1/metabolismo , Albuminas/uso terapêutico , Linhagem Celular Tumoral , Meia-Vida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
9.
Front Immunol ; 12: 703574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539634

RESUMO

CD38 is the major NAD+-hydrolyzing ecto-enzyme in most mammals. As a type II transmembrane protein, CD38 is also a promising target for the immunotherapy of multiple myeloma (MM). Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Using phage display technology, we isolated 13 mouse CD38-specific nanobodies from immunized llamas and produced these as recombinant chimeric mouse IgG2a heavy chain antibodies (hcAbs). Sequence analysis assigned these hcAbs to five distinct families that bind to three non-overlapping epitopes of CD38. Members of families 4 and 5 inhibit the GDPR-cyclase activity of CD38. Members of families 2, 4 and 5 effectively induce complement-dependent cytotoxicity against CD38-expressing tumor cell lines, while all families effectively induce antibody dependent cellular cytotoxicity. Our hcAbs present unique tools to assess cytotoxicity mechanisms of CD38-specific hcAbs in vivo against tumor cells and potential off-target effects on normal cells expressing CD38 in syngeneic mouse tumor models, i.e. in a fully immunocompetent background.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antineoplásicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Cadeias Pesadas de Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Neoplasias/imunologia , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Antineoplásicos/genética , Linhagem Celular Tumoral , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
10.
Immun Inflamm Dis ; 9(3): 905-917, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33979020

RESUMO

BACKGROUND: Hamburg is a city state of approximately 1.9 Mio inhabitants in Northern Germany. Currently, the COVID-19 epidemic that had largely subsided during last summer is resurging in Hamburg and in other parts of the world, underlining the need for additional tools to monitor SARS-CoV-2 antibody responses. AIM: We aimed to develop and validate a simple, low-cost assay for detecting antibodies against the native coronavirus 2 spike protein (CoV-2 S) that does not require recombinant protein or virus. METHOD: We transiently co-transfected HEK cells or CHO cells with expression vectors encoding CoV-2 S and nuclear GFP. Spike protein-specific antibodies in human serum samples bound to transfected cells were detected with fluorochrome conjugated secondary antibodies by flow cytometry orimmunofluorescence microscopy. We applied this assay to monitor antibody development in COVID-19 patients, household contacts, and hospital personnel during the ongoing epidemic in the city state of Hamburg. RESULTS: All recovered COVID-19 patients showed high levels of CoV-2 S-specific antibodies. With one exception, all household members that did not develop symptoms also did not develop detectable antibodies. Similarly, lab personnel that worked during the epidemic and followed social distancing guidelines remained antibody-negative. CONCLUSION: We conclude that high-titer CoV-2 S-specific antibodies are found in most recovered COVID-19 patients and in symptomatic contacts, but only rarely in asymptomatic contacts. The assay may help health care providers to monitor disease progression and antibody responses in vaccination trials, to identify health care personnel that likely are resistant to re-infection, and recovered individuals with high antibody titers that may be suitable asplasma and/or antibody donors.


Assuntos
Anticorpos Antivirais/análise , COVID-19 , Glicoproteína da Espícula de Coronavírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , COVID-19/imunologia , Cricetinae , Cricetulus , Citometria de Fluxo , Células HEK293 , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
11.
BMC Urol ; 21(1): 58, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836738

RESUMO

BACKGROUND: Long-term use of urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage. Microbial biofilms are a common cause of catheter blockage, reducing their lifetime and significantly increasing morbidity of UTIs. A 0.02% polyhexanide irrigation solution developed for routine mechanical rinsing shows potential for bacterial decolonization of urethral catheters and has the potential to reduce or prevent biofilm formation. METHODS: Using an in vitro assay with standard market-leading types of catheters artificially contaminated with clinically relevant bacteria, assays were carried out to evaluate the biofilm reduction and prevention potential of a 0.02% polyhexanide solution versus no intervention (standard approach) and irrigation with saline solution (NaCl 0.9%). The efficiency of decolonization was measured through microbial plate count and membrane filtration. RESULTS: Irrigation using a 0.02% polyhexanide solution is suitable for the decolonization of a variety of transurethral catheters. The effect observed is significant compared to irrigation with 0.9% saline solution (p = 0.002) or no treatment (p = 0.011). No significant difference was found between irrigation with 0.9% saline solution and no treatment (p = 0.74). CONCLUSIONS: A 0.02% polyhexanide solution is able to reduce bacterial biofilm from catheters artificially contaminated with clinically relevant bacteria in vitro. The data shows a reduction of the viability of thick bacterial biofilms in a variety of commercially available urinary catheters made from silicone, latex-free silicone, hydrogel-coated silicone and PVC. Further research is required to evaluate the long-term tolerability and efficacy of polyhexanide in clinical practice.


Assuntos
Biguanidas/farmacologia , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Equipamentos/prevenção & controle , Cateteres Urinários/microbiologia , Biguanidas/administração & dosagem , Desinfetantes/administração & dosagem , Humanos , Irrigação Terapêutica
12.
Theranostics ; 10(6): 2645-2658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194826

RESUMO

Rationale: CD38 is a target for the therapy of multiple myeloma (MM) with monoclonal antibodies such as daratumumab and isatuximab. Since MM patients exhibit a high rate of relapse, the development of new biologics targeting alternative CD38 epitopes is desirable. The discovery of single-domain antibodies (nanobodies) has opened the way for a new generation of antitumor therapeutics. We report the generation of nanobody-based humanized IgG1 heavy chain antibodies (hcAbs) with a high specificity and affinity that recognize three different and non-overlapping epitopes of CD38 and compare their cytotoxicity against CD38-expressing hematological cancer cells in vitro, ex vivo and in vivo. Methods: We generated three humanized hcAbs (WF211-hcAb, MU1067-hcAb, JK36-hcAb) that recognize three different non-overlapping epitopes (E1, E2, E3) of CD38 by fusion of llama-derived nanobodies to the hinge- and Fc-domains of human IgG1. WF211-hcAb shares the binding epitope E1 with daratumumab. We compared the capacity of these CD38-specific hcAbs and daratumumab to induce CDC and ADCC in CD38-expressing tumor cell lines in vitro and in patient MM cells ex vivo as well as effects on xenograft tumor growth and survival in vivo. Results: CD38-specific heavy chain antibodies (WF211-hcAb, MU1067-hcAb, JK36-hcAb) potently induced antibody-dependent cellular cytotoxicity (ADCC) in CD38-expressing tumor cell lines and in primary patient MM cells, but only little if any complement-dependent cytotoxicity (CDC). In vivo, CD38-specific heavy chain antibodies significantly reduced the growth of systemic lymphomas and prolonged survival of tumor bearing SCID mice. Conclusions: CD38-specific nanobody-based humanized IgG1 heavy chain antibodies mediate cytotoxicity against CD38-expressing hematological cancer cells in vitro, ex vivo and in vivo. These promising results of our study indicate that CD38-specific hcAbs warrant further clinical development as therapeutics for multiple myeloma and other hematological malignancies.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Glicoproteínas de Membrana/imunologia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos de Domínio Único/uso terapêutico , Idoso , Animais , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade
13.
Cells ; 9(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013131

RESUMO

The NAD-hydrolyzing ecto-enzyme CD38 is overexpressed by multiple myeloma and other hematological malignancies. We recently generated CD38-specific nanobodies, single immunoglobulin variable domains derived from heavy-chain antibodies naturally occurring in llamas. Nanobodies exhibit high solubility and stability, allowing easy reformatting into recombinant fusion proteins. Here we explore the utility of CD38-specific nanobodies as ligands for nanobody-based chimeric antigen receptors (Nb-CARs). We cloned retroviral expression vectors for CD38-specific Nb-CARs. The human natural killer cell line NK-92 was transduced to stably express these Nb-CARs. As target cells we used CD38-expressing as well as CRISPR/Cas9-generated CD38-deficient tumor cell lines (CA-46, LP-1, and Daudi) transduced with firefly luciferase. With these effector and target cells we established luminescence and flow-cytometry CAR-dependent cellular cytotoxicity assays (CARDCCs). Finally, the cytotoxic efficacy of Nb-CAR NK-92 cells was tested on primary patient-derived CD38-expressing multiple myeloma cells. NK-92 cells expressing CD38-specific Nb-CARs specifically lysed CD38-expressing but not CD38-deficient tumor cell lines. Moreover, the Nb-CAR-NK cells effectively depleted CD38-expressing multiple myeloma cells in primary human bone marrow samples. Our results demonstrate efficacy of Nb-CARs in vitro. The potential clinical efficacy of Nb-CARs in vivo remains to be evaluated.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Linfoma de Burkitt/metabolismo , Mieloma Múltiplo/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Células Matadoras Naturais/metabolismo , Lentivirus/metabolismo , Luciferases/metabolismo , Luminescência , Modelos Moleculares
14.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396591

RESUMO

The nucleotides ATP and NAD+ are released from stressed cells as endogenous danger signals. Ecto-enzymes in the tumor microenvironment hydrolyze these inflammatory nucleotides to immunosuppressive adenosine, thereby, hampering anti-tumor immune responses. The NAD+ hydrolase CD38 is expressed at high levels on the cell surface of multiple myeloma (MM) cells. Daratumumab, a CD38-specific monoclonal antibody promotes cytotoxicity against MM cells. With long CDR3 loops, nanobodies and nanobody-based heavy chain antibodies (hcAbs) might bind to cavities on CD38 and thereby inhibit its enzyme activity more potently than conventional antibodies. The goal of our study was to establish assays for monitoring the enzymatic activities of CD38 on the cell surface of tumor cells and to assess the effects of CD38-specific antibodies on these activities. We monitored the enzymatic activity of CD38-expressing MM and other tumor cell lines, using fluorometric and HPLC assays. Our results showed that daratumumab and hcAb MU1067 inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38-expressing MM cells. We conclude that neither clinically approved daratumumab nor recently developed nanobody-derived hcAbs provide a second mode of action against MM cells. Thus, there remains a quest for "double action" CD38-inhibitory antibodies.

15.
Front Immunol ; 9: 2553, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524421

RESUMO

CD38 is overexpressed by multiple myeloma cells and has emerged as a target for therapeutic antibodies. Nanobodies are soluble single domain antibody fragments derived from the VHH variable domain of heavy chain antibodies naturally occurring in camelids. We previously identified distinct llama nanobodies that recognize three non-overlapping epitopes of the extracellular domain of CD38. Here, we fused these VHH domains to the hinge, CH2, and CH3 domains of human IgG1, yielding highly soluble chimeric llama/human heavy chain antibodies (hcAbs). We analyzed the capacity of these hcAbs to mediate complement-dependent cytotoxicity (CDC) to CD38-expressing human multiple myeloma and Burkitt lymphoma cell lines. Combinations of two hcAbs that recognize distinct, non-overlapping epitopes of CD38 mediated potent CDC, in contrast to the hcAb monotherapy with only weak CDC capacity. Similarly, combining daratumumab with a hcAb that recognizes a non-overlapping epitope resulted in dramatically enhanced CDC. Further, introducing the E345R HexaBody mutation into the CH3 domain strongly enhanced the CDC potency of hcAbs to CD38-expressing cells. Exploiting their high solubility, we genetically fused two distinct nanobodies into heteromeric dimers via a flexible peptide linker and then fused these nanobody dimers to the hinge, CH2 and CH3 domains of human IgG1, yielding highly soluble, biparatopic hcAbs. These biparatopic hcAbs elicited CDC toward CD38-expressing myeloma cells more effectively than daratumumab. Our results underscore the advantage of nanobodies vs. pairs of VH and VL domains for constructing bispecific antibodies. Moreover, the CD38-specific biparatopic heavy chain antibodies described here represent potential new powerful therapeutics for treatment of multiple myeloma.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Biespecíficos/farmacologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Epitopos de Linfócito B/imunologia , Imunoterapia/métodos , Mieloma Múltiplo/imunologia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Camelídeos Americanos , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Mieloma Múltiplo/terapia , Proteínas Recombinantes de Fusão/genética , Anticorpos de Domínio Único/genética
16.
Front Immunol ; 8: 1603, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213270

RESUMO

Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA