Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(1): 135-140, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852819

RESUMO

Redox enzymes are capable of catalyzing a vast array of useful reactions, but they require redox partners that donate or accept electrons. Semiconductor nanocrystals provide a mechanism to convert absorbed photon energy into redox equivalents for enzyme catalysis. Here, we describe a system for photochemical carbon-carbon bond formation to make 2-oxoglutarate by coupling CO2 with a succinyl group. Photoexcited electrons from cadmium sulfide nanorods (CdS NRs) transfer to 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus MC-1 (MmOGOR), which catalyzes a carbon-carbon bond formation reaction. We thereby decouple MmOGOR from its native role in the reductive tricarboxylic acid cycle and drive it directly with light. We examine the dependence of 2-oxoglutarate formation on a variety of factors and, using ultrafast transient absorption spectroscopy, elucidate the critical role of electron transfer (ET) from CdS NRs to MmOGOR. We find that the efficiency of this ET depends strongly on whether the succinyl CoA (SCoA) cosubstrate is bound at the MmOGOR active site. We hypothesize that the conformational changes due to SCoA binding impact the CdS NR-MmOGOR interaction in a manner that decreases ET efficiency compared to the enzyme with no cosubstrate bound. Our work reveals structural considerations for the nano-bio interfaces involved in light-driven enzyme catalysis and points to the competing factors of enzyme catalysis and ET efficiency that may arise when complex enzyme reactions are driven by artificial light absorbers.


Assuntos
Compostos de Cádmio/química , Dióxido de Carbono/metabolismo , Carbono/química , Luz , Nanotubos/química , Oxirredutases/metabolismo , Fotoquímica/métodos , Sulfetos/química , Acil Coenzima A , Alphaproteobacteria/enzimologia , Catálise , Ciclo do Ácido Cítrico , Transporte de Elétrons , Elétrons , Ferredoxinas/metabolismo , Cetoácidos , Ácidos Cetoglutáricos/metabolismo , Nanopartículas/química , Oxirredução
2.
J Phys Chem Lett ; 10(11): 2782-2787, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067408

RESUMO

Charge-carrier traps play a central role in the excited-state dynamics of semiconductor nanocrystals, but their influence is often difficult to measure directly. In CdS and CdSe nanorods of nonuniform width, spatially separated electrons and trapped holes display relaxation dynamics that follow a power-law function in time that is consistent with a recombination process limited by trapped-hole diffusion. However, power-law relaxation can originate from mechanisms other than diffusion. Here we report transient absorption spectroscopy measurements on CdS and CdSe nanorods recorded at temperatures ranging from 160 to 294 K. We find that the exponent of the power law is temperature-independent, which rules out several models based on stochastic activated processes and provides insights into the mechanism of diffusion-limited recombination in these structures. The data point to weak electronic coupling between trap states and suggest that surface-localized trapped holes couple strongly to phonons, leading to slow diffusion. Trap-to-trap hole hopping behaves classically near room temperature, while quantum aspects of phonon-assisted tunneling become observable at low temperatures.

3.
J Am Chem Soc ; 139(37): 12879-12882, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28851216

RESUMO

Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The Hox→HredH+ reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol-1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the Hox→HredH+ step of catalytic proton reduction in CaI proceeds by a proton-dependent process.


Assuntos
Compostos de Cádmio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Compostos de Selênio/metabolismo , Termodinâmica , Compostos de Cádmio/química , Clostridium acetobutylicum/enzimologia , Medição da Troca de Deutério , Transporte de Elétrons , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Cinética , Conformação Molecular , Nanoestruturas/química , Oxirredução , Compostos de Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Science ; 352(6284): 448-50, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102481

RESUMO

The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.


Assuntos
Compostos de Cádmio/química , Molibdoferredoxina/química , Nitrogênio/química , Nitrogenase/química , Sulfetos/química , Trifosfato de Adenosina/química , Amônia/química , Catálise/efeitos da radiação , Hidrólise/efeitos da radiação , Luz , Nanopartículas/química , Fixação de Nitrogênio , Nitrogenase/efeitos da radiação , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA