Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535795

RESUMO

Harmful cyanobacterial blooms are becoming more common and persistent around the world. When in bloom, various cyanobacterial strains can produce anatoxins in high concentrations, which, unlike other cyanobacterial toxins, may be present in clear water. Potential human and animal exposures to anatoxins occur mainly through unintentional ingestion of contaminated algal mats and water. To address this public health threat, we developed and validated an LC-MS/MS method to detect anatoxins in human urine to confirm exposures. Pooled urine was fortified with anatoxin-a and dihydroanatoxin at concentrations from 10.0 to 500 ng/mL to create calibrators and quality control samples. Samples were diluted with isotopically labeled anatoxin and solvent prior to LC-MS/MS analysis. This method can accurately quantitate anatoxin-a with inter- and intraday accuracies ranging from 98.5 to 103% and relative standard deviations < 15%, which is within analytical guidelines for mass spectrometry methods. Additionally, this method qualitatively detects a common degradation product of anatoxin, dihydroanatoxin, above 10 ng/mL. We also evaluated a commercial anatoxin-a ELISA kit for potential diagnostic use; however, numerous false positives were detected from unexposed individual human urine samples. In conclusion, we have developed a method to detect anatoxins precisely and accurately in urine samples, addressing a public health area of concern, which can be applied to future exposure events.


Assuntos
Toxinas de Cianobactérias , Espectrometria de Massas em Tandem , Tropanos , Água , Animais , Humanos , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática
2.
Toxins (Basel) ; 14(11)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422987

RESUMO

Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms.


Assuntos
Microcistinas , Plasma , Humanos , Bioensaio , Fosfoproteínas Fosfatases
3.
Clin Toxicol (Phila) ; 60(2): 262-266, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33913398

RESUMO

INTRODUCTION: Tetrodotoxin (TTX) is a potent sodium channel blocker, with significant neurotoxicity, found in marine animals like pufferfish and blue-ringed octopus. The severity of toxicity depends on the amount of toxin ingested and the outcome depends on the time-lapse to appropriate medical care. CASES REPORT: We report five patients who presented with tetrodotoxin poisoning after consuming fried internal organs of local pufferfish from the coast of Oman. The patients' clinical manifestations were consistent with the expected TTX toxidrome of perioral and generalized paresthesia, weakness of upper and lower extremities, gastrointestinal manifestations, dyspnea, dysarthria, ascending paralysis, hypotension, bradycardia and coma. The severity varied among the patients who recovered completely except one patient who developed a subarachnoid hemorrhage without underlying aneurysms on computed tomography-angiogram. This complication was potentially related to TTX poisoning and has not been previously reported. In addition to standard supportive management, patients with severe illness should potentially receive the intravenous acetylcholinesterase inhibitor neostigmine, and intermittent dialysis. Urine specimens were sent to CDC in Atlanta, where they were analyzed using online solid phase extraction (SPE) with LC-MS/MS and confirmed the diagnosis in all five cases. DISCUSSION: In general, the patients' clinical manifestations were consistent with the expected TTX toxidrome except patient 3 who developed a subarachnoid hemorrhage early during his clinical course. Two patients received neostigmine and underwent dialysis with complete recovery.


Assuntos
Acetilcolinesterase , Doenças Transmitidas por Alimentos , Tetrodotoxina , Animais , Inibidores da Colinesterase/uso terapêutico , Cromatografia Líquida , Doenças Transmitidas por Alimentos/diagnóstico , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/terapia , Humanos , Omã/epidemiologia , Espectrometria de Massas em Tandem , Tetrodotoxina/análise , Tetrodotoxina/intoxicação
4.
J Anal Toxicol ; 46(3): 322-327, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33515246

RESUMO

Florida red tides have become more common and persistent in and around the Gulf of Mexico. When in bloom, red tides can produce brevetoxins in high concentrations, leading to human exposures primarily through contaminated food and ocean spray. The research described here includes adapting and validating a commercial brevetoxin water test kit for human plasma testing. Pooled plasma was fortified with a model brevetoxin, brevetoxin 3, at concentrations from 0.00500 to 3.00 ng/mL to generate calibration curves and quality control samples. The quantitative detection range was determined to be 0.0400-2.00 ng/mL brevetoxin 3 equivalents with inter- and intraday accuracies ranging from 94.0% to 109% and relative standard deviations <20%, which is within the US Food and Drug Administration guidelines for receptor-binding assays. Additionally, cross-reactivity was tested using 4 of the 10 known brevetoxins and 12 paralytic shellfish toxins. The cross-reactivity varied from 0.173% to 144% for the commercially available brevetoxin standards and 0% for the commercially available paralytic shellfish toxin standards. Fifty individual unexposed human plasma samples were measured to determine the limit of detection and endogenous interferences to the test. The validated method was used to test 31 plasma samples collected from humans potentially exposed to brevetoxins, detecting 11 positives. This method has been proven useful to measure human exposure to brevetoxins and can be applied to future exposure events.


Assuntos
Dinoflagellida , Bioensaio , Ensaio de Imunoadsorção Enzimática/métodos , Proliferação Nociva de Algas , Humanos , Toxinas Marinhas , Oxocinas , Estados Unidos
5.
J Am Soc Mass Spectrom ; 32(12): 2852-2859, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793156

RESUMO

To combat the ongoing opioid epidemic, our laboratory has developed and evaluated an approach to detect fentanyl analogs in urine and plasma by screening LC-QTOF MS/MS spectra for ions that are diagnostic of the core fentanyl structure. MS/MS data from a training set of 142 fentanyl analogs were used to select the four product ions and six neutral losses that together provided the most complete coverage (97.2%) of the training set compounds. Furthermore, using the diagnostic ion screen against a set of 49 fentanyl analogs not in the training set resulted in 95.9% coverage of those compounds. With this approach, lower reportable limits for fentanyl and a subset of fentanyl-related compounds range from 0.25 to 2.5 ng/mL in urine and 0.5 to 5.0 ng/mL in plasma. This innovative processing method was applied to evaluate simulated exposure samples of remifentanil and carfentanil in water and their metabolites remifentanil acid and norcarfentanil in urine. This flexible approach enables a way to detect emerging fentanyl analogs in clinical samples.


Assuntos
Cromatografia Líquida/métodos , Fentanila , Espectrometria de Massas em Tandem/métodos , Fentanila/análogos & derivados , Fentanila/análise , Humanos , Íons/química , Medicamentos Sintéticos/análise
6.
MMWR Morb Mortal Wkly Rep ; 69(50): 1889-1894, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33332289

RESUMO

Harmful algal bloom events can result from the rapid growth, or bloom, of photosynthesizing organisms in natural bodies of fresh, brackish, and salt water. These events can be exacerbated by nutrient pollution (e.g., phosphorus) and warming waters and other climate change effects (1); have a negative impact on the health of humans, animals, and the environment; and damage local economies (2,3). U.S. harmful algal bloom events of public health concern are centered on a subset of phytoplankton: diatoms, dinoflagellates, and cyanobacteria (also called blue-green algae). CDC launched the One Health Harmful Algal Bloom System (OHHABS) in 2016 to inform efforts to prevent human and animal illnesses associated with harmful algal bloom events. A total of 18 states reported 421 harmful algal bloom events, 389 cases of human illness, and 413 cases of animal illness that occurred during 2016-2018. The majority of harmful algal bloom events occurred during May-October (413; 98%) and in freshwater bodies (377; 90%). Human and animal illnesses primarily occurred during June-September (378; 98%) and May-September (410; 100%). Gastrointestinal or generalized illness signs or symptoms were the most frequently reported (>40% of human cases and >50% of animal cases); however, multiple other signs and symptoms were reported. Surveillance data from harmful algal bloom events, exposures, and health effects provide a systematic description of these occurrences and can be used to inform control and prevention of harmful algal bloom-associated illnesses.


Assuntos
Doenças Transmissíveis/epidemiologia , Exposição Ambiental/efeitos adversos , Proliferação Nociva de Algas , Saúde Única , Vigilância em Saúde Pública/métodos , Adolescente , Adulto , Idoso , Doenças dos Animais/epidemiologia , Animais , Criança , Pré-Escolar , Doenças Transmissíveis/veterinária , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
7.
Toxins (Basel) ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075251

RESUMO

Globally, mushroom poisonings cause about 100 human deaths each year, with thousands of people requiring medical assistance. Dogs are also susceptible to mushroom poisonings and require medical assistance. Cyclopeptides, and more specifically amanitins (or amatoxins, here), are the mushroom poison that causes the majority of these deaths. Current methods (predominantly chromatographic, as well as antibody-based) of detecting amatoxins are time-consuming and require expensive equipment. In this work, we demonstrate the utility of the lateral flow immunoassay (LFIA) for the rapid detection of amatoxins in urine samples. The LFIA detects as little as 10 ng/mL of α-amanitin (α-AMA) or γ-AMA, and 100 ng/mL of ß-AMA in urine matrices. To demonstrate application of this LFIA for urine analysis, this study examined fortified human urine samples and urine collected from exposed dogs. Urine is sampled directly without the need for any pretreatment, detection from urine is completed in 10 min, and the results are read by eye, without the need for specialized equipment. Analysis of both fortified human urine samples and urine samples collected from intoxicated dogs using the LFIA correlated well with liquid chromatography-mass spectrometry (LC-MS) methods.


Assuntos
Amanitinas/urina , Doenças do Cão/urina , Imunoensaio/métodos , Intoxicação Alimentar por Cogumelos/urina , Testes Imediatos , Amanitinas/química , Animais , Cães , Humanos , Imunoensaio/veterinária , Estrutura Molecular , Intoxicação Alimentar por Cogumelos/veterinária , Sensibilidade e Especificidade
8.
Toxicol Lett ; 320: 87-94, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812604

RESUMO

Human exposures to fentanyl analogs, which significantly contribute to the ongoing U.S. opioid overdose epidemic, can be confirmed through the analysis of clinical samples. Our laboratory has developed and evaluated a qualitative approach coupling liquid chromatography and quadrupole time-of-flight mass spectrometry (LC-QTOF) to address novel fentanyl analogs and related compounds using untargeted, data-dependent acquisition. Compound identification was accomplished by searching against a locally-established mass spectral library of 174 fentanyl analogs and metabolites. Currently, our library can identify 150 fentanyl-related compounds from the Fentanyl Analog Screening (FAS) Kit), plus an additional 25 fentanyl-related compounds from individual purchases. Plasma and urine samples fortified with fentanyl-related compounds were assessed to confirm the capabilities and intended use of this LC-QTOF method. For fentanyl, 8 fentanyl-related compounds and naloxone, lower reportable limits (LRL100), defined as the lowest concentration with 100 % true positive rate (n = 12) within clinical samples, were evaluated and range from 0.5 ng/mL to 5.0 ng/mL for urine and 0.25 ng/mL to 2.5 ng/mL in plasma. The application of this high resolution mass spectrometry (HRMS) method enables the real-time detection of known and emerging synthetic opioids present in clinical samples.


Assuntos
Analgésicos Opioides/sangue , Analgésicos Opioides/urina , Cromatografia Líquida de Alta Pressão , Fentanila/sangue , Fentanila/urina , Espectrometria de Massas por Ionização por Electrospray , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem , Analgésicos Opioides/síntese química , Cromatografia Líquida de Alta Pressão/normas , Fentanila/análogos & derivados , Fentanila/síntese química , Humanos , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/normas , Detecção do Abuso de Substâncias/normas , Espectrometria de Massas em Tandem/normas
9.
Toxins (Basel) ; 11(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847123

RESUMO

Microcystins (MC) and nodularin (NOD) are toxins released by cyanobacteria during harmful algal blooms. They are potent inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A) and cause a variety of adverse symptoms in humans and animals if ingested. More than 250 chemically diverse congeners of MCs have been identified, but certified reference materials are only available for a few. A diagnostic test that does not require each reference material for detection is necessary to identify human exposures. To address this need, our lab has developed a method that uses an antibody to specifically isolate MCs and NOD from urine prior to detection via a commercially available PP2A kit. This assay quantitates the summed inhibitory activity of nearly all MCs and NOD on PP2A relative to a common MC congener, microcystin-LR (MC-LR). The quantitation range for MC-LR using this method is from 0.050-0.500 ng/mL. No background responses were detected in a convenience set of 50 individual urines. Interday and intraday % accuracies ranged from 94%-118% and relative standard deviations were 15% or less, meeting FDA guidelines for receptor binding assays. The assay detected low levels of MCs in urines from three individuals living in close proximity to harmful algal blooms (HABs) in Florida.


Assuntos
Microcistinas/urina , Peptídeos Cíclicos/urina , Proteína Fosfatase 2/antagonistas & inibidores , Humanos , Imunoensaio
10.
Toxicol Lett ; 317: 53-58, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31560942

RESUMO

In 2017, the U.S. Department of Health and Human Services and the White House declared a public health emergency to address the opioid crisis (Hargan, 2017). On average, 192 Americans died from drug overdoses each day in 2017; 130 (67%) of those died specifically because of opioids (Scholl et al., 2019). Since 2013, there have been significant increases in overdose deaths involving synthetic opioids - particularly those involving illicitly-manufactured fentanyl. The U.S. Drug Enforcement Administration (DEA) estimates that 75% of all opioid identifications are illicit fentanyls (DEA, 2018b). Laboratories are routinely asked to confirm which fentanyl or other opioids are involved in an overdose or encountered by first responders. It is critical to identify and classify the types of drugs involved in an overdose, how often they are involved, and how that involvement may change over time. Health care providers, public health professionals, and law enforcement officers need to know which opioids are in use to treat, monitor, and investigate fatal and non-fatal overdoses. By knowing which drugs are present, appropriate prevention and response activities can be implemented. Laboratory testing is available for clinically used and widely recognized opioids. However, there has been a rapid expansion in new illicit opioids, particularly fentanyl analogs that may not be addressed by current laboratory capabilities. In order to test for these new opioids, laboratories require reference standards for the large number of possible fentanyls. To address this need, the Centers for Disease Control and Prevention (CDC) developed the Traceable Opioid Material§ Kits product line, which provides over 150 opioid reference standards, including over 100 fentanyl analogs. These kits were designed to dramatically increase laboratory capability to confirm which opioids are on the streets and causing deaths. The kits are free to U.S based laboratories in the public, private, clinical, law enforcement, research, and public health domains.


Assuntos
Analgésicos Opioides/análise , Overdose de Drogas/diagnóstico , Fentanila/análise , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Kit de Reagentes para Diagnóstico/normas , Detecção do Abuso de Substâncias/normas , Analgésicos Opioides/classificação , Calibragem , Overdose de Drogas/mortalidade , Fentanila/análogos & derivados , Fentanila/classificação , Humanos , Transtornos Relacionados ao Uso de Opioides/mortalidade , Valor Preditivo dos Testes , Padrões de Referência , Reprodutibilidade dos Testes , Estados Unidos/epidemiologia
11.
J Anal Toxicol ; 43(4): 266-276, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462229

RESUMO

Fentanyl, and the numerous drugs derived from it, are contributing to the opioid overdose epidemic currently underway in the USA. To identify human exposure to these growing public health threats, an LC-MS-MS method for 5 µL dried blood spots (DBS) was developed. This method was developed to detect exposure to 3-methylfentanyl, alfentanil, α-methylfentanyl, carfentanil, fentanyl, lofentanil, sufentanil, norcarfentanil, norfentanyl, norlofentanil, norsufentanil, and using a separate LC-MS-MS injection, cyclopropylfentanyl, acrylfentanyl, 2-furanylfentanyl, isobutyrylfentanyl, ocfentanil and methoxyacetylfentanyl. Preparation of materials into groups of compounds was used to accommodate an ever increasing need to incorporate newly identified fentanyls. This protocol was validated within a linear range of 1.00-100 ng/mL, with precision ≤12% CV and accuracy ≥93%, as reported for the pooled blood QC samples, and limits of detection as low as 0.10 ng/mL. The use of DBS to assess fentanyl analog exposures can facilitate rapid sample collection, transport, and preparation for analysis that could enhance surveillance and response efforts in the ongoing opioid overdose epidemic.


Assuntos
Analgésicos Opioides/sangue , Teste em Amostras de Sangue Seco/métodos , Overdose de Drogas/sangue , Overdose de Drogas/epidemiologia , Fentanila/análogos & derivados , Fentanila/sangue , Detecção do Abuso de Substâncias/métodos , Analgésicos Opioides/síntese química , Autopsia , Cromatografia Líquida , Confiabilidade dos Dados , Fentanila/síntese química , Furanos/sangue , Hematócrito , Humanos , Umidade/prevenção & controle , Drogas Ilícitas/sangue , Espectrometria de Massas em Tandem , Estados Unidos/epidemiologia
12.
Anal Chim Acta ; 1033: 100-107, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30172315

RESUMO

A method was developed to detect and quantify organophosphate nerve agent (OPNA) metabolites in dried blood samples. Dried blood spots (DBS) and microsampling devices are alternatives to traditional blood draws, allowing for safe handling, extended stability, reduced shipping costs, and potential self-sampling. DBS and microsamplers were evaluated for precision, accuracy, sensitivity, matrix effects, and extraction recovery following collection of whole blood containing five OPNA metabolites. The metabolites of VX, Sarin (GB), Soman (GD), Cyclosarin (GF), and Russian VX (VR) were quantitated from 5.0 to 500 ng mL-1 with precision of ≤16% and accuracy between 93 and 108% for QC samples with controlled volumes. For unknown spot volumes, OPNA metabolite concentrations were normalized to total blood protein to improve interpretation of nerve agent exposures. This study provides data to support the use of DBS and microsamplers to collect critical exposure samples quickly, safely, and efficiently following large-scale chemical exposure events.


Assuntos
Teste em Amostras de Sangue Seco , Agentes Neurotóxicos/análise , Compostos Organofosforados/sangue , Compostos Organotiofosforados/sangue , Sarina/sangue , Soman/sangue , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Agentes Neurotóxicos/metabolismo , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Sarina/metabolismo , Soman/metabolismo , Espectrometria de Massas em Tandem
13.
Chem Res Toxicol ; 31(9): 898-903, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30133262

RESUMO

Microcystins are toxins produced by many cyanobacteria species, which are often released into waterways during blue-green algal blooms in freshwater and marine habitats. The consumption of microcystin-contaminated water is a public health concern as these toxins are recognized tumor promoters and are hepatotoxic to humans and animals. A method to confirm human exposures to microcystins is needed; therefore, our laboratory has developed an immunocapture liquid chromatography tandem mass spectrometry (LC-MS/MS) method targeting the conserved adda portion of microcystins for the quantitation of a prevalent and highly toxic congener of microcystin, microcystin-LR (MC-LR). An acute exposure method was initially evaluated for accuracy and precision by analyzing calibrators and quality control (QC) samples ranging from 0.500 to 75.0 ng/mL in urine. All calibrators and QC samples characterized were within 15% of theoretical concentrations. An analysis of acutely exposed mouse urine samples using this method identified MC-LR levels from 10.7 to 33.9 ng/mL. Since human exposures are anticipated to result from low-dose or chronic exposures, a high-sensitivity method was validated with 20 calibration curves and QC samples ranging from 0.0100 to 7.50 ng/mL. Relative standard deviations (RSDs) and inaccuracies of these samples were within 15%, meeting United States Food and Drug Administration (FDA) guidelines for analytical methods, and the limit of detection was 0.00455 ng/mL. In conclusion, we have developed a method which can be used to address public health concerns by precisely and accurately measuring MC-LR in urine samples.


Assuntos
Cromatografia Líquida/métodos , Microcistinas/urina , Animais , Cianobactérias/metabolismo , Feminino , Humanos , Limite de Detecção , Masculino , Toxinas Marinhas , Camundongos , Controle de Qualidade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
14.
Toxicon ; 152: 71-77, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30071219

RESUMO

The majority of fatalities from poisonous mushroom ingestion are caused by amatoxins. To prevent liver failure or death, it is critical to accurately and rapidly diagnose amatoxin exposure. We have developed a liquid chromatography tandem mass spectrometry method to detect α-, ß-, and γ-amanitin in urine to meet this need. Two internal standard candidates were evaluated, including an isotopically labeled 15N10-α-amanitin and a modified amanitin methionine sulfoxide synthetic peptide. Using the 15N10-α-amanitin internal standard, precision and accuracy of α-amanitin in pooled urine was ≤5.49% and between 100 and 106%, respectively, with a reportable range from 1-200 ng/mL. ß- and γ-Amanitin were most accurately quantitated in pooled urine using external calibration, resulting in precision ≤17.2% and accuracy between 99 and 105% with calibration ranges from 2.5-200 ng/mL and 1.0-200 ng/mL, respectively. The presented urinary diagnostic test is the first method to use an isotopically labeled α-amanitin with the ability to detect and confirm human exposures to α-, ß-, and γ-amanitin.


Assuntos
Amanitinas/urina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/urina , Humanos , Intoxicação Alimentar por Cogumelos/diagnóstico , Isótopos de Nitrogênio
15.
Bioanalysis ; 10(4): 229-239, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29333869

RESUMO

AIM: An immunomagnetic capture protocol for use with LC-MS was developed for the quantitation of saxitoxin (STX) in human urine. MATERIALS & METHODS: This method uses monoclonal antibodies coupled to magnetic beads. STX was certified reference material grade from National Research Council, Canada. Analysis was carried out using LC-MS. RESULTS: With an extraction efficiency of 80%, accuracy and precision of 93.0-100.2% and 5.3-12.6%, respectively, and a dynamic range of 1.00-100 ng/ml, the method is well suited to quantify STX exposures based on previously reported cases. CONCLUSION: Compared with our previously published protocols, this method has improved selectivity, a fivefold increase in sensitivity and uses only a third of the sample volume. This method can diagnose future toxin exposures and may complement the shellfish monitoring programs worldwide.


Assuntos
Cromatografia Líquida/métodos , Testes Imunológicos , Saxitoxina/urina , Intoxicação por Frutos do Mar/urina , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/imunologia , Calibragem , Humanos , Imãs , Microesferas , Padrões de Referência , Saxitoxina/química , Saxitoxina/normas , Intoxicação por Frutos do Mar/diagnóstico , Fatores de Tempo
16.
Anal Methods ; 9: 3876-3883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181095

RESUMO

An automated dried blood spot (DBS) elution coupled with solid phase extraction and tandem mass spectrometric analysis for multiple fentanyl analogs was developed and assessed. This method confirms human exposures to fentanyl, sufentanil, carfentanil, alfentanil, lofentanil, α-methyl fentanyl, and 3-methyl fentanyl in blood with minimal sample volume and reduced shipping and storage costs. Seven fentanyl analogs were detected and quantitated from DBS made from venous blood. The calibration curve in matrix was linear in the concentration range of 1.0 ng/mL to 100 ng/mL with a correlation coefficient greater than 0.98 for all compounds. The limit of detection varied from 0.15 ng/mL to 0.66 ng/mL depending on target analyte. Analysis of the entire DBS minimized the effects of hematocrit on quantitation. All quality control materials evaluated resulted in <15% error; analytes with isotopically labeled internal standards had <15% RSD, while analytes without matching standards had 15-24% RSD. This method provides an automated means to detect seven fentanyl analogs, and quantitate four fentanyl analogs with the benefits of DBS at levels anticipated from an overdose of these potent opioids.

17.
Toxicon ; 133: 110-115, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28495477

RESUMO

Saxitoxin (STX) is a potent marine toxin that causes paralytic shellfish poisoning (PSP) which can result in significant morbidity and mortality in humans. Low lethal doses, rapid onset of PSP symptoms, and brief STX half-life in vivo require sensitive and rapid diagnostic techniques to monitor human exposures. Our laboratory has validated an enzyme-linked immunosorbent assay (ELISA) for quantitative detection of STX from 0.020 to 0.80 ng/mL in human whole blood and from 0.06 to 2.0 ng/mL in dried human blood which is simple, sensitive, rapid, and cost-effective. To our knowledge, this is the first validated method for the quantitation of saxitoxin in whole blood. Microsampling devices were used in sample collection which allows for standardized collection of blood, stable storage, and cost-efficient shipping. Quality control precision and accuracy were evaluated over the course of validation and were within 20% of theoretical concentrations. No detectable background concentrations of STX were found among fifty whole blood and dried blood convenience samples. Additionally, ten spiked individual whole blood and dried blood samples were tested for accuracy and precision and were within 20% of theoretical concentrations. Gonyautoxins 2&3 (GTX2&3) cross-reacted with this ELISA by 21%, but all other structurally related PSP toxins tested cross-reacted less than two percent. While clinical diagnosis or treatment of PSP would be unaffected by GTX2&3 cross-reactivity by ELISA, to accurately quantify individual PSP toxins, these results should be coupled with high performance liquid chromatography mass spectrometry measurements.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Saxitoxina/análise , Saxitoxina/sangue , Coleta de Amostras Sanguíneas/métodos , Reações Cruzadas , Humanos , Reprodutibilidade dos Testes , Saxitoxina/análogos & derivados , Intoxicação por Frutos do Mar/diagnóstico
18.
Proc SPIE Int Soc Opt Eng ; 98630: 98630P-98630P9, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27942095

RESUMO

Public health response to large scale chemical emergencies presents logistical challenges for sample collection, transport, and analysis. Diagnostic methods used to identify and determine exposure to chemical warfare agents, toxins, and poisons traditionally involve blood collection by phlebotomists, cold transport of biomedical samples, and costly sample preparation techniques. Use of dried blood spots, which consist of dried blood on an FDA-approved substrate, can increase analyte stability, decrease infection hazard for those handling samples, greatly reduce the cost of shipping/storing samples by removing the need for refrigeration and cold chain transportation, and be self-prepared by potentially exposed individuals using a simple finger prick and blood spot compatible paper. Our laboratory has developed clinical assays to detect human exposures to nerve agents through the analysis of specific protein adducts and metabolites, for which a simple extraction from a dried blood spot is sufficient for removing matrix interferents and attaining sensitivities on par with traditional sampling methods. The use of dried blood spots can bridge the gap between the laboratory and the field allowing for large scale sample collection with minimal impact on hospital resources while maintaining sensitivity, specificity, traceability, and quality requirements for both clinical and forensic applications.

19.
J Anal Toxicol ; 40(3): 229-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26861671

RESUMO

Biomedical samples may be used to determine human exposure to nerve agents through the analysis of specific biomarkers. Samples received may include serum, plasma, whole blood, lysed blood and, due to the toxicity of these compounds, postmortem blood. To quantitate metabolites resulting from exposure to sarin (GB), soman (GD), cyclosarin (GF), VX and VR, these blood matrices were evaluated individually for precision, accuracy, sensitivity and specificity. Accuracies for these metabolites ranged from 100 to 113% with coefficients of variation ranging from 2.31 to 13.5% across a reportable range of 1-100 ng/mL meeting FDA recommended guidelines for bioanalytical methods in all five matrices. Limits of detection were calculated to be 0.09-0.043 ng/mL, and no interferences were detected in unexposed matrix samples. The use of serum calibrators was also determined to be a suitable alternative to matrix-matched calibrators. Finally, to provide a comparative value between whole blood and plasma, the ratio of the five nerve agent metabolites measured in whole blood versus plasma was determined. Analysis of individual whole blood samples (n = 40), fortified with nerve agent metabolites across the reportable range, resulted in average nerve agent metabolite blood to plasma ratios ranging from 0.53 to 0.56. This study demonstrates the accurate and precise quantitation of nerve agent metabolites in serum, plasma, whole blood, lysed blood and postmortem blood. It also provides a comparative value between whole blood and plasma samples, which can assist epidemiologists and physicians with interpretation of test results from blood specimens obtained under variable conditions.


Assuntos
Agentes Neurotóxicos/análise , Estabilidade de Medicamentos , Humanos , Limite de Detecção , Agentes Neurotóxicos/química , Agentes Neurotóxicos/metabolismo
20.
Toxicon ; 99: 118-24, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25817003

RESUMO

Saxitoxin (STX) and neosaxitoxin (NEO) are potent neurotoxins that cause paralytic shellfish poisoning (PSP). PSP typically occurs through the ingestion of bivalve shellfish that have consumed toxin producing dinoflagellates. Due to initial presentation of symptoms being nonspecific, a clinical measurement is needed to confirm exposure to these toxins. Our group has developed an online solid phase extraction hydrophilic interaction liquid chromatography (HILIC) method for the analysis of STX and NEO in human urine with tandem mass spectrometry. A unique feature of this online method is the incorporation of a new synthetic (15)N4-STX labeled internal standard used for quantitation. Manual sample preparation time was reduced by approximately 70% for 98 urine samples as compared to a previously reported method. The lowest reportable limit for STX was improved from 5.0 ng/mL to 1.01 ng/mL and from 10.0 ng/mL to 2.62 ng/mL for NEO. Three analysts validated the method with 20 calibration curves total over 30 days with precision and accuracy within ±15% for all QCs. This new online method rapidly identifies STX and NEO exposure with improved sensitivity, which can facilitate the work of public health authorities to confirm the cases of PSP, complementing the many shellfish monitoring programs worldwide.


Assuntos
Neurotoxinas/urina , Saxitoxina/análogos & derivados , Saxitoxina/urina , Intoxicação por Frutos do Mar/urina , Métodos Analíticos de Preparação de Amostras , Automação Laboratorial , Calibragem , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Neurotoxinas/química , Neurotoxinas/toxicidade , Isótopos de Nitrogênio , Reprodutibilidade dos Testes , Saxitoxina/química , Saxitoxina/toxicidade , Sensibilidade e Especificidade , Intoxicação por Frutos do Mar/diagnóstico , Intoxicação por Frutos do Mar/etiologia , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA