Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 6(6): e413, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35774626

RESUMO

Drought is a key constraint on plant productivity and threat to food security. Sorghum (Sorghum bicolor L. Moench), a global staple food and forage crop, is among the most drought-adapted cereal crops, but its adaptation is not yet well understood. This study aims to better understand the genetic basis of preflowering drought in sorghum and identify loci underlying variation in water use and yield components under drought. A panel of 219 diverse sorghum from West Africa was phenotyped for yield components and water use in an outdoor large-tube lysimeter system under well-watered (WW) versus a preflowering drought water-stressed (WS) treatment. The experimental system was validated based on characteristic drought response in international drought tolerant check genotypes and genome-wide association studies (GWAS) that mapped the major height locus at QHT7.1 and Dw3. GWAS further identified marker trait associations (MTAs) for drought-related traits (plant height, flowering time, forage biomass, grain weight, water use) that each explained 7-70% of phenotypic variance. Most MTAs for drought-related traits correspond to loci not previously reported, but some MTA for forage biomass and grain weight under WS co-localized with staygreen post-flowering drought tolerance loci (Stg3a and Stg4). A globally common allele at S7_50055849 is associated with several yield components under drought, suggesting that it tags a major pleiotropic variant controlling assimilate partitioning to grain versus vegetative biomass. The GWAS revealed oligogenic variants for drought tolerance in sorghum landraces, which could be used as trait predictive markers for improved drought adaptation.

2.
Gigascience ; 10(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710327

RESUMO

BACKGROUND: Digitaria exilis, white fonio, is a minor but vital crop of West Africa that is valued for its resilience in hot, dry, and low-fertility environments and for the exceptional quality of its grain for human nutrition. Its success is hindered, however, by a low degree of plant breeding and improvement. FINDINGS: We sequenced the fonio genome with long-read SMRT-cell technology, yielding a ∼761 Mb assembly in 3,329 contigs (N50, 1.73 Mb; L50, 126). The assembly approaches a high level of completion, with a BUSCO score of >99%. The fonio genome was found to be a tetraploid, with most of the genome retained as homoeologous duplications that differ overall by ∼4.3%, neglecting indels. The 2 genomes within fonio were found to have begun their independent divergence ∼3.1 million years ago. The repeat content (>49%) is fairly standard for a grass genome of this size, but the ratio of Gypsy to Copia long terminal repeat retrotransposons (∼6.7) was found to be exceptionally high. Several genes related to future improvement of the crop were identified including shattering, plant height, and grain size. Analysis of fonio population genetics, primarily in Mali, indicated that the crop has extensive genetic diversity that is largely partitioned across a north-south gradient coinciding with the Sahel and Sudan grassland domains. CONCLUSIONS: We provide a high-quality assembly, annotation, and diversity analysis for a vital African crop. The availability of this information should empower future research into further domestication and improvement of fonio.


Assuntos
Digitaria , Melhoramento Vegetal , Digitaria/genética , Variação Genética , Genoma de Planta , Humanos , Preparações de Plantas
3.
Genes (Basel) ; 12(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396649

RESUMO

A deep understanding of the genetic control of drought tolerance and iron deficiency tolerance is essential to hasten the process of developing improved varieties with higher tolerance through genomics-assisted breeding. In this context, an improved genetic map with 1205 loci was developed spanning 2598.3 cM with an average 2.2 cM distance between loci in the recombinant inbred line (TAG 24 × ICGV 86031) population using high-density 58K single nucleotide polymorphism (SNP) "Axiom_Arachis" array. Quantitative trait locus (QTL) analysis was performed using extensive phenotyping data generated for 20 drought tolerance- and two iron deficiency tolerance-related traits from eight seasons (2004-2015) at two locations in India, one in Niger, and one in Senegal. The genome-wide QTL discovery analysis identified 19 major main-effect QTLs with 10.0-33.9% phenotypic variation explained (PVE) for drought tolerance- and iron deficiency tolerance- related traits. Major main-effect QTLs were detected for haulm weight (20.1% PVE), SCMR (soil plant analytical development (SPAD) chlorophyll meter reading, 22.4% PVE), and visual chlorosis rate (33.9% PVE). Several important candidate genes encoding glycosyl hydrolases; malate dehydrogenases; microtubule-associated proteins; and transcription factors such as MADS-box, basic helix-loop-helix (bHLH), NAM, ATAF, and CUC (NAC), and myeloblastosis (MYB) were identified underlying these QTL regions. The putative function of these genes indicated their possible involvement in plant growth, development of seed and pod, and photosynthesis under drought or iron deficiency conditions in groundnut. These genomic regions and candidate genes, after validation, may be useful to develop molecular markers for deploying genomics-assisted breeding for enhancing groundnut yield under drought stress and iron-deficient soil conditions.


Assuntos
Adaptação Fisiológica/genética , Arachis/genética , Mapeamento Cromossômico/métodos , Secas , Deficiências de Ferro , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Clorofila/biossíntese , Clorofila/genética , Cromossomos de Plantas/química , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Índia , Anotação de Sequência Molecular , Níger , Fenótipo , Melhoramento Vegetal/métodos , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Senegal , Estresse Fisiológico/genética
4.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28922347

RESUMO

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Assuntos
Agricultura , Clima Desértico , Genoma de Planta , Pennisetum/genética , Característica Quantitativa Herdável , Sequência de Bases , Sequência Conservada , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Hibridização Genética , Anotação de Sequência Molecular
5.
Field Crops Res ; 199: 42-51, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27917017

RESUMO

Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut (Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm2 m-2. The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.

6.
Euphytica ; 206(3): 631-647, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594055

RESUMO

Yield under drought stress is a highly complex trait with large influence to even a minor fluctuation in the environmental conditions. Genomics-assisted breeding holds great promise for improving such complex traits more efficiently in less time, but requires markers associated with the trait of interest. In this context, a recombinant inbred line mapping population (TAG 24 × ICGV 86031) was used to identify markers associated with quantitative trait loci (QTLs) for yield and yield related traits at two important locations of West Africa under well watered and water stress conditions. Among the traits analyzed under WS condition, the harvest index (HI) and the haulm yield (HYLD) were positively correlated with the pod yield (PYLD) and showed intermediate broad sense heritability. QTL analysis using phenotyping and genotyping data resulted in identification of 52 QTLs. These QTLs had low phenotypic variance (<12 %) for all the nine traits namely plant height, primary branching, SPAD chlorophyll meter reading, percentage of sound mature kernels, 100 kernel weight, shelling percentage, HI, HYLD and PYLD. Interestingly, few QTLs identified in this study were also overlapped with previously reported QTLs detected for drought tolerance related traits identified earlier in Indian environmental conditions using the same mapping population. Accumulating these many small-effect QTLs into a single genetic background is nearly impossible through marker-assisted backcrossing and even marker-assisted recurrent selection. Under such circumstances, the deployment of genomic selection is the most appropriate approach for improving such complex traits with more precision and in less time.

7.
PLoS One ; 9(8): e105228, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140620

RESUMO

Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the 'reference set' of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15-20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (p value > 2.1 × 10-6) with wide phenotypic variance (PV) range (5.81-90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components.


Assuntos
Arachis/genética , Estudo de Associação Genômica Ampla/normas , Análise por Conglomerados , Produtos Agrícolas/genética , Genes de Plantas , Melhoramento Genético , Genótipo , Hibridização Genética , Desequilíbrio de Ligação , Repetições de Microssatélites , Padrões de Referência , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA