Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(42): e2003482, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32885516

RESUMO

Understanding the origin and distribution of electronic gap states in metal halide perovskite (MHP) thin films is crucial to the further improvement of the efficiency and long-term stability of MHP-based optoelectronic devices. In this work, the impact of Lewis-basic additives introduced in the precursor solution on the density of states in the perovskite bandgap is investigated. Ultraviolet photoemission spectroscopy and contact potential difference measurements are conducted on MHP thin films processed from dimethylformamide (DMF)-based solutions to which either no additive, dimethylsulfoxide (DMSO), or N-methylpyrrolidine-2-thione (NMPT) is added. The results show the presence of a density of states in the gap of methylammonium lead halide films processed from DMSO-containing solution. The density of gap states is either suppressed when the methylammonium concentration in mixed cation films is reduced or when NMPT is used as an additive, and eliminated when methylammonium (MA) is replaced with cesium or formamidinium (FA). These results are consistent with the notion that reaction products that result from DMSO reacting with MA+ in the precursor solution are responsible for the formation of gap states.

2.
Adv Mater ; 31(49): e1904494, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31523862

RESUMO

Typical lead-based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near-infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR-chromophore that is also a Lewis-base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis-basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination-induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one-sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR-harvesting PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA