Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3846, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451691

RESUMO

Necrotizing soft tissue infections (NSTIs) are devastating infections caused by either a single pathogen, predominantly Streptococcus pyogenes, or by multiple bacterial species. A better understanding of the pathogenic mechanisms underlying these different NSTI types could facilitate faster diagnostic and more effective therapeutic strategies. Here, we integrate microbial community profiling with host and pathogen(s) transcriptional analysis in patient biopsies to dissect the pathophysiology of streptococcal and polymicrobial NSTIs. We observe that the pathogenicity of polymicrobial communities is mediated by synergistic interactions between community members, fueling a cycle of bacterial colonization and inflammatory tissue destruction. In S. pyogenes NSTIs, expression of specialized virulence factors underlies infection pathophysiology. Furthermore, we identify a strong interferon-related response specific to S. pyogenes NSTIs that could be exploited as a potential diagnostic biomarker. Our study provides insights into the pathophysiology of mono- and polymicrobial NSTIs and highlights the potential of host-derived signatures for microbial diagnosis of NSTIs.


Assuntos
Coinfecção/patologia , Infecções dos Tecidos Moles/patologia , Infecções Estreptocócicas/patologia , Fatores de Virulência/metabolismo , Adulto , Idoso , Técnicas de Tipagem Bacteriana , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Biópsia , Coinfecção/diagnóstico , Coinfecção/microbiologia , DNA Bacteriano/isolamento & purificação , Escherichia/genética , Escherichia/isolamento & purificação , Escherichia/metabolismo , Feminino , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Necrose/diagnóstico , Necrose/microbiologia , Necrose/patologia , RNA Ribossômico 16S/genética , RNA-Seq , Infecções dos Tecidos Moles/diagnóstico , Infecções dos Tecidos Moles/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/metabolismo , Fatores de Virulência/genética
2.
Life (Basel) ; 3(1): 211-33, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25371340

RESUMO

Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 °C to 100 °C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO2 and H2S concentration varied at different sampling locations in the system, but the SO2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants (Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches.

3.
New Phytol ; 196(4): 1074-1085, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025405

RESUMO

High concentrations of sulfur dioxide (SO(2) ) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO(2) detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l(-1) SO(2) , using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO(2) detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Sulfito Oxidase/genética , Dióxido de Enxofre/farmacologia , Poluentes Atmosféricos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Defensinas/genética , Enzimas/genética , Enzimas/metabolismo , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sulfito Oxidase/metabolismo , Enxofre/metabolismo , Transcriptoma
4.
Plant Cell Environ ; 35(1): 100-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21895698

RESUMO

In the present study, the significance of sulfite oxidase (SO) for sulfite detoxification and sulfur assimilation was investigated. In response to sulfur dioxide (SO(2)) exposure, a remarkable expansion of sulfate and a significant increase of GSH pool were observed in wild-type and SO-overexpressing Arabidopsis. These metabolic changes were connected with a negative feedback inhibition of adenosine 5'-phosphosulfate reductase (APR), but no alterations in gas exchange parameters or visible symptoms of injury. However, Arabidopsis SO-KO mutants were consistently negatively affected upon 600 nL L(-1) SO(2) exposure for 60 h and showed phenotypical symptoms of injury with small necrotic spots on the leaves. The mean g(H2O) was reduced by about 60% over the fumigation period, accompanied by a reduction of net CO(2) assimilation and SO(2) uptake of about 50 and 35%. Moreover, sulfur metabolism was completely distorted. Whereas sulfate pool was kept constant, thiol-levels strongly increased. This demonstrates that SO should be the only protagonist for back-oxidizing and detoxification of sulfite. Based on these results, it is suggested that co-regulation of SO and APR controls sulfate assimilation pathway and stabilizes sulfite distribution into organic sulfur compounds. In conclusion, a sulfate-sulfite cycle driven by APR and SO can be postulated for fine-tuning of sulfur distribution that is additionally used for sulfite detoxification, when plants are exposed to atmospheric SO(2).


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sulfito Oxidase/metabolismo , Dióxido de Enxofre/farmacologia , Enxofre/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Técnicas de Inativação de Genes , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sulfatos/análise , Sulfatos/metabolismo , Compostos de Sulfidrila/análise , Sulfito Oxidase/genética
5.
Plant J ; 67(3): 542-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21481030

RESUMO

Dynamic protein-protein interactions are essential in all cellular and developmental processes. Protein-fragment complementation assays allow such protein-protein interactions to be investigated in vivo. In contrast to other protein-fragment complementation assays, the split-luciferase (split-LUC) complementation approach facilitates dynamic and quantitative in vivo analysis of protein interactions, as the restoration of luciferase activity upon protein-protein interaction of investigated proteins is reversible. Here, we describe the development of a floated-leaf luciferase complementation imaging (FLuCI) assay that enables rapid and quantitative in vivo analyses of protein interactions in leaf discs floating on a luciferin infiltration solution after transient expression of split-LUC-labelled interacting proteins in Nicotiana benthamiana. We generated a set of eight Gateway-compatible split-LUC destination vectors, enabling fast, and almost fail-safe cloning of candidate proteins to the LUC termini in all possible constellations. We demonstrate their functionality by visualizing the well-established homodimerization of the 14-3-3 regulator proteins. Quantitative interaction analyses of the molybdenum co-factor biosynthesis proteins CNX6 and CNX7 show that the luciferase-based protein-fragment complementation assay allows direct real-time monitoring of absolute values of protein complex assembly. Furthermore, the split-LUC assay is established as valuable tool to investigate the dynamics of protein interactions by monitoring the disassembly of actin filaments in planta. The new Gateway-compatible split-LUC destination vector system, in combination with the FLuCI assay, provides a useful means to facilitate quantitative analyses of interactions between large numbers of proteins constituting interaction networks in plant cells.


Assuntos
Medições Luminescentes/métodos , Microscopia Confocal/métodos , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Vetores Genéticos , Immunoblotting/métodos , Luciferases/genética , Luciferases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium , Sulfurtransferases/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA